Data-Driven Predictive Voltage Control for Distributed Energy Storage in Active Distribution Networks

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2023-06-27 DOI:10.17775/CSEEJPES.2022.02880
Yanda Huo;Peng Li;Haoran Ji;Hao Yu;Jinli Zhao;Wei Xi;Jianzhong Wu;Chengshan Wang
{"title":"Data-Driven Predictive Voltage Control for Distributed Energy Storage in Active Distribution Networks","authors":"Yanda Huo;Peng Li;Haoran Ji;Hao Yu;Jinli Zhao;Wei Xi;Jianzhong Wu;Chengshan Wang","doi":"10.17775/CSEEJPES.2022.02880","DOIUrl":null,"url":null,"abstract":"Integration of distributed energy storage (DES) is beneficial for mitigating voltage fluctuations in highly distributed generator (DG)-penetrated active distribution networks (ADNs). Based on an accurate physical model of ADN, conventional model-based methods can realize optimal control of DES. However, absence of network parameters and complex operational states of ADN poses challenges to model-based methods. This paper proposes a data-driven predictive voltage control method for DES. First, considering time-series constraints, a data-driven predictive control model is formulated for DES by using measurement data. Then, a data-driven coordination method is proposed for DES and DGs in each area. Through boundary information interaction, voltage mitigation effects can be improved by inter-area coordination control. Finally, control performance is tested on a modified IEEE 33-node test case. Case studies demonstrate that by fully utilizing multi-source data, the proposed predictive control method can effectively regulate DES and DGs to mitigate voltage violations.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"1876-1886"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10165656","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10165656/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Integration of distributed energy storage (DES) is beneficial for mitigating voltage fluctuations in highly distributed generator (DG)-penetrated active distribution networks (ADNs). Based on an accurate physical model of ADN, conventional model-based methods can realize optimal control of DES. However, absence of network parameters and complex operational states of ADN poses challenges to model-based methods. This paper proposes a data-driven predictive voltage control method for DES. First, considering time-series constraints, a data-driven predictive control model is formulated for DES by using measurement data. Then, a data-driven coordination method is proposed for DES and DGs in each area. Through boundary information interaction, voltage mitigation effects can be improved by inter-area coordination control. Finally, control performance is tested on a modified IEEE 33-node test case. Case studies demonstrate that by fully utilizing multi-source data, the proposed predictive control method can effectively regulate DES and DGs to mitigate voltage violations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有源配电网络中分布式储能的数据驱动型预测电压控制
在高度分布式发电机(DG)渗透的有源配电网(ADN)中,集成分布式储能(DES)有利于缓解电压波动。基于精确的 ADN 物理模型,传统的基于模型的方法可以实现 DES 的优化控制。然而,网络参数的缺失和 ADN 复杂的运行状态给基于模型的方法带来了挑战。本文提出了一种数据驱动的 DES 预测电压控制方法。首先,考虑时间序列约束,利用测量数据为 DES 建立数据驱动预测控制模型。然后,针对每个区域的 DES 和 DG,提出了一种数据驱动协调方法。通过边界信息交互,区域间协调控制可改善电压缓解效果。最后,在修改后的 IEEE 33 节点测试案例中测试了控制性能。案例研究表明,通过充分利用多源数据,所提出的预测控制方法可以有效调节 DES 和 DG,从而缓解电压违规问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1