Increasing dam failure risk in the USA due to compound rainfall clusters as climate changes

Jeongwoo Hwang, Upmanu Lall
{"title":"Increasing dam failure risk in the USA due to compound rainfall clusters as climate changes","authors":"Jeongwoo Hwang, Upmanu Lall","doi":"10.1038/s44304-024-00027-6","DOIUrl":null,"url":null,"abstract":"A changing climate, with intensifying precipitation may contribute to increasing failures of dams by overtopping. We present the first analysis of rainfall sequences and events associated with recent hydrologic failures of 552 dams in the United States. We find that the maximum 1-day rainfall associated with failure was often not extreme compared to dam spillway design criteria, even when accounting for rainfall statistics changing with time at each site. However, the combination of the total rainfall 5 to 30 days prior and the maximum 1-day rainfall associated with dam failure is rare. Persistent atmospheric circulation patterns that lead to recurrent rainfall events, rather than just more moisture in the atmosphere is a possible reason. The probability of these compound precipitation risks has increased across much of the country. With over 90,000 aging dams still in service, the increasing likelihood of intense rainfall sequences raises concerns about future dam failures.","PeriodicalId":501712,"journal":{"name":"npj Natural Hazards","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44304-024-00027-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Natural Hazards","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44304-024-00027-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A changing climate, with intensifying precipitation may contribute to increasing failures of dams by overtopping. We present the first analysis of rainfall sequences and events associated with recent hydrologic failures of 552 dams in the United States. We find that the maximum 1-day rainfall associated with failure was often not extreme compared to dam spillway design criteria, even when accounting for rainfall statistics changing with time at each site. However, the combination of the total rainfall 5 to 30 days prior and the maximum 1-day rainfall associated with dam failure is rare. Persistent atmospheric circulation patterns that lead to recurrent rainfall events, rather than just more moisture in the atmosphere is a possible reason. The probability of these compound precipitation risks has increased across much of the country. With over 90,000 aging dams still in service, the increasing likelihood of intense rainfall sequences raises concerns about future dam failures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随着气候变化,复合降雨群导致美国溃坝风险增加
气候不断变化,降水量不断增加,可能会导致越来越多的水坝被冲垮。我们首次分析了与美国 552 座水坝近期水文溃坝相关的降雨序列和事件。我们发现,与大坝溢洪道设计标准相比,与溃坝相关的 1 天最大降雨量通常并不极端,即使考虑到每个地点随时间变化的降雨统计数据也是如此。然而,5 到 30 天前的总降雨量和与溃坝相关的 1 天最大降雨量的组合是罕见的。可能的原因是大气环流模式持续存在,导致降雨事件反复发生,而不仅仅是大气中的水汽增多。在美国大部分地区,出现这些复合降水风险的概率已经增加。目前仍在使用的老化水坝超过 90,000 座,强降雨连续发生的可能性越来越大,这引起了人们对未来水坝溃坝的担忧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Debris flows in the northern Tien Shan, Central Asia: regional database, meteorological triggers, and trends Adaptation portfolio – a multi-measure framework for future floods and droughts Earthquakes yes, disasters no Bayesian estimation of the likelihood of extreme hail sizes over the United States Climate change exacerbates compound flooding from recent tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1