Debris flows in the northern Tien Shan, Central Asia: regional database, meteorological triggers, and trends

Maria Shahgedanova, Zarina Saidaliyeva, Ainur Mussina, Vassily Kapitsa, Zhanar Raimbekova, Denis Donskikh, Daulet Kissebayev, Murat Kasenov, Maxim Petrov
{"title":"Debris flows in the northern Tien Shan, Central Asia: regional database, meteorological triggers, and trends","authors":"Maria Shahgedanova, Zarina Saidaliyeva, Ainur Mussina, Vassily Kapitsa, Zhanar Raimbekova, Denis Donskikh, Daulet Kissebayev, Murat Kasenov, Maxim Petrov","doi":"10.1038/s44304-024-00050-7","DOIUrl":null,"url":null,"abstract":"Debris flows, caused by Glacier Lake Outburst Floods (GLOF) or extreme weather, threaten lives and infrastructure in the northern Tien Shan. A geo-referenced database of 458 debris flow events of different geneses was compiled for the region. Between 1887 and 2020, there were 55 GLOF events, all resulting in debris flow formation. Their frequency peaked in the 1970s and declined afterwards. These events were associated with high air temperatures but not heavy rainfall. Debris flows unrelated to GLOFs were documented in the central Ile Alatau for the 1931–2020 period. They were predominantly caused by short-duration intense rainfall (pluvial debris flows) and/or intense glaciers and snowmelt. The median rainfall intensity triggering pluvial debris flows was 22–28 mm/day, depending on the catchment. There was no long-term trend in the frequency of pluvial debris flows, but their formation is increasingly observed at higher elevations.","PeriodicalId":501712,"journal":{"name":"npj Natural Hazards","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44304-024-00050-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Natural Hazards","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44304-024-00050-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Debris flows, caused by Glacier Lake Outburst Floods (GLOF) or extreme weather, threaten lives and infrastructure in the northern Tien Shan. A geo-referenced database of 458 debris flow events of different geneses was compiled for the region. Between 1887 and 2020, there were 55 GLOF events, all resulting in debris flow formation. Their frequency peaked in the 1970s and declined afterwards. These events were associated with high air temperatures but not heavy rainfall. Debris flows unrelated to GLOFs were documented in the central Ile Alatau for the 1931–2020 period. They were predominantly caused by short-duration intense rainfall (pluvial debris flows) and/or intense glaciers and snowmelt. The median rainfall intensity triggering pluvial debris flows was 22–28 mm/day, depending on the catchment. There was no long-term trend in the frequency of pluvial debris flows, but their formation is increasingly observed at higher elevations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Debris flows in the northern Tien Shan, Central Asia: regional database, meteorological triggers, and trends Adaptation portfolio – a multi-measure framework for future floods and droughts Earthquakes yes, disasters no Bayesian estimation of the likelihood of extreme hail sizes over the United States Climate change exacerbates compound flooding from recent tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1