Amplified temperature sensitivity of extreme precipitation events following heat stress

IF 8.4 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-10-10 DOI:10.1038/s41612-024-00796-x
Zhiling Zhou, Liping Zhang, Qin Zhang, Hui Cao, Hairong Zhang, Benjun Jia, Lina Liu, Zhenyu Tang, Jie Chen
{"title":"Amplified temperature sensitivity of extreme precipitation events following heat stress","authors":"Zhiling Zhou, Liping Zhang, Qin Zhang, Hui Cao, Hairong Zhang, Benjun Jia, Lina Liu, Zhenyu Tang, Jie Chen","doi":"10.1038/s41612-024-00796-x","DOIUrl":null,"url":null,"abstract":"This study investigates global extreme precipitation events (EPEs) during warm seasons, with a particular focus on EPEs preceded by extreme heat stress (EPE-Hs) and a comparative analysis with those not (EPE-NHs). Using reanalysis product and Earth System Model data, the spatiotemporal characteristics and temperature sensitivities of EPEs are analyzed. Results show that EPE-Hs, while less frequent, have longer duration and greater magnitude compared to EPE-NHs, particularly in high latitude regions. In the future, a significant increase is projected in the characteristics of EPE-Hs, in contrast to the stable duration and magnitude of EPE-NHs. EPE-Hs demonstrate substantially higher temperature sensitivity than EPE-NHs, especially in low latitudes. The precipitation-temperature scaling relationships diverge markedly between EPE-Hs and EPE-NHs, with notable regional variations. These insights are pivotal for crafting region-specific early warning and adaptation strategies to mitigate the risks associated with extreme precipitation under the backdrop of global warming.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-13"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00796-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00796-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates global extreme precipitation events (EPEs) during warm seasons, with a particular focus on EPEs preceded by extreme heat stress (EPE-Hs) and a comparative analysis with those not (EPE-NHs). Using reanalysis product and Earth System Model data, the spatiotemporal characteristics and temperature sensitivities of EPEs are analyzed. Results show that EPE-Hs, while less frequent, have longer duration and greater magnitude compared to EPE-NHs, particularly in high latitude regions. In the future, a significant increase is projected in the characteristics of EPE-Hs, in contrast to the stable duration and magnitude of EPE-NHs. EPE-Hs demonstrate substantially higher temperature sensitivity than EPE-NHs, especially in low latitudes. The precipitation-temperature scaling relationships diverge markedly between EPE-Hs and EPE-NHs, with notable regional variations. These insights are pivotal for crafting region-specific early warning and adaptation strategies to mitigate the risks associated with extreme precipitation under the backdrop of global warming.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热应激后极端降水事件对温度的敏感性增强
本研究调查了温暖季节的全球极端降水事件(EPEs),重点关注极端热应激之前的极端降水事件(EPE-Hs),并与非极端热应激的极端降水事件(EPE-NHs)进行了对比分析。利用再分析产品和地球系统模式数据,分析了 EPE 的时空特征和温度敏感性。结果表明,与 EPE-NHs 相比,EPE-Hs 虽然频率较低,但持续时间更长、强度更大,尤其是在高纬度地区。预计未来 EPE-Hs 的特征将显著增加,而 EPE-NHs 的持续时间和强度将保持稳定。EPE-Hs 对温度的敏感性大大高于 EPE-NHs,尤其是在低纬度地区。降水-温度比例关系在 EPE-Hs 和 EPE-NHs 之间存在明显差异,且区域差异显著。这些见解对于制定针对特定地区的预警和适应战略,以减轻全球变暖背景下与极端降水相关的风险至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Multi-scale drivers of increasing off-season tropical cyclone landfalls in the western North Pacific Contribution of bioaerosols from terrestrial ecosystems to ice-nucleating particles over the Arctic Ocean Deep learning model for enhancing decadal prediction of Eurasian surface air temperature Quantifying Arctic-boreal methane emissions using atmospheric observations and a global inverse model Enhanced NO2-driven multiphase formation of particulate nitrate and sulfate under high-humidity conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1