Chongwei Gao, Ming Chen, Jiantao Li, Xunan Wang, Guobin Zhang, Xi Tan, Shuhua Zhang, Guang Feng, Dengyun Zhai, Feiyu Kang
{"title":"Unveil the role of structural vacancy in Mn-based Prussian blue analogues for energy storage application","authors":"Chongwei Gao, Ming Chen, Jiantao Li, Xunan Wang, Guobin Zhang, Xi Tan, Shuhua Zhang, Guang Feng, Dengyun Zhai, Feiyu Kang","doi":"10.1039/d4ee01618a","DOIUrl":null,"url":null,"abstract":"Prussian blue analogues (PBAs) are promising cathode materials for monovalent- and multivalent-ion batteries due to their large framework structures. Nevertheless, the influence of lattice vacancies on electrochemical performance has not been thoroughly clarified, hindering the further development of PBAs. Here we identify two types of functional vacancies, namely structural vacancy (SV) and incidental vacancy (IV) in manganese hexacyanoferrate (MnHCF) through Synchrotron-based X-ray absorption spectroscopy and density functional theory calculations. Unlike structurally disordered IV, the introduction of structurally ordered SV promotes ion transport and reduces the interaction between host ions and the framework, enabling improved cyclic and rate performance. The controllable adjustment of SV in K-rich MnHCF is achieved through a co-reactant method. Furthermore, the partial introduction of SV in K-rich MnHCF is demonstrated to favor both a milder structural evolution by alleviating the Jahn-teller distortion of Mn<small><sup>3+</sup></small> and a stable dynamic process of interface reaction. This study unveils the potential importance of incorporating structural vacancy into MnHCF for advanced energy storage applications.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee01618a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Prussian blue analogues (PBAs) are promising cathode materials for monovalent- and multivalent-ion batteries due to their large framework structures. Nevertheless, the influence of lattice vacancies on electrochemical performance has not been thoroughly clarified, hindering the further development of PBAs. Here we identify two types of functional vacancies, namely structural vacancy (SV) and incidental vacancy (IV) in manganese hexacyanoferrate (MnHCF) through Synchrotron-based X-ray absorption spectroscopy and density functional theory calculations. Unlike structurally disordered IV, the introduction of structurally ordered SV promotes ion transport and reduces the interaction between host ions and the framework, enabling improved cyclic and rate performance. The controllable adjustment of SV in K-rich MnHCF is achieved through a co-reactant method. Furthermore, the partial introduction of SV in K-rich MnHCF is demonstrated to favor both a milder structural evolution by alleviating the Jahn-teller distortion of Mn3+ and a stable dynamic process of interface reaction. This study unveils the potential importance of incorporating structural vacancy into MnHCF for advanced energy storage applications.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).