Implementing any Linear Combination of Unitaries on Intermediate-term Quantum Computers

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2024-10-10 DOI:10.22331/q-2024-10-10-1496
Shantanav Chakraborty
{"title":"Implementing any Linear Combination of Unitaries on Intermediate-term Quantum Computers","authors":"Shantanav Chakraborty","doi":"10.22331/q-2024-10-10-1496","DOIUrl":null,"url":null,"abstract":"We develop three new methods to implement any Linear Combination of Unitaries (LCU), a powerful quantum algorithmic tool with diverse applications. While the standard LCU procedure requires several ancilla qubits and sophisticated multi-qubit controlled operations, our methods consume significantly fewer quantum resources. The first method ($\\textit{Single-Ancilla LCU}$) estimates expectation values of observables with respect to any quantum state prepared by an LCU procedure while requiring only a single ancilla qubit, and no multi-qubit controlled operations. The second approach ($\\textit{Analog LCU}$) is a simple, physically motivated, continuous-time analogue of LCU, tailored to hybrid qubit-qumode systems. The third method ($\\textit{Ancilla-free LCU}$) requires no ancilla qubit at all and is useful when we are interested in the projection of a quantum state (prepared by the LCU procedure) in some subspace of interest. We apply the first two techniques to develop new quantum algorithms for a wide range of practical problems, ranging from Hamiltonian simulation, ground state preparation and property estimation, and quantum linear systems. Remarkably, despite consuming fewer quantum resources they retain a provable quantum advantage. The third technique allows us to connect discrete and continuous-time quantum walks with their classical counterparts. It also unifies the recently developed optimal quantum spatial search algorithms in both these frameworks, and leads to the development of new ones that require fewer ancilla qubits. Overall, our results are quite generic and can be readily applied to other problems, even beyond those considered here.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-10-1496","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop three new methods to implement any Linear Combination of Unitaries (LCU), a powerful quantum algorithmic tool with diverse applications. While the standard LCU procedure requires several ancilla qubits and sophisticated multi-qubit controlled operations, our methods consume significantly fewer quantum resources. The first method ($\textit{Single-Ancilla LCU}$) estimates expectation values of observables with respect to any quantum state prepared by an LCU procedure while requiring only a single ancilla qubit, and no multi-qubit controlled operations. The second approach ($\textit{Analog LCU}$) is a simple, physically motivated, continuous-time analogue of LCU, tailored to hybrid qubit-qumode systems. The third method ($\textit{Ancilla-free LCU}$) requires no ancilla qubit at all and is useful when we are interested in the projection of a quantum state (prepared by the LCU procedure) in some subspace of interest. We apply the first two techniques to develop new quantum algorithms for a wide range of practical problems, ranging from Hamiltonian simulation, ground state preparation and property estimation, and quantum linear systems. Remarkably, despite consuming fewer quantum resources they retain a provable quantum advantage. The third technique allows us to connect discrete and continuous-time quantum walks with their classical counterparts. It also unifies the recently developed optimal quantum spatial search algorithms in both these frameworks, and leads to the development of new ones that require fewer ancilla qubits. Overall, our results are quite generic and can be readily applied to other problems, even beyond those considered here.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在中期量子计算机上实现任意单元线性组合
我们开发了三种新方法来实现任何单元线性组合(LCU),这是一种具有多种应用的强大量子算法工具。标准的 LCU 程序需要几个安其拉量子比特和复杂的多量子比特控制操作,而我们的方法消耗的量子资源要少得多。第一种方法($\textit{Single-Ancilla LCU}$)只需要单个ancilla量子比特,不需要多量子比特控制操作,就能估算出通过LCU程序准备的任何量子态的观测值的期望值。第二种方法($\textit{Analog LCU}$)是一种简单的、物理的、连续时间的 LCU 类似方法,是为混合量子比特-量子模型系统量身定制的。第三种方法($\textit{无辅助 LCU}$)完全不需要辅助量子比特,当我们对量子态(由 LCU 过程准备)在某些感兴趣的子空间中的投影感兴趣时,这种方法就非常有用。我们应用前两种技术为一系列实际问题开发了新的量子算法,包括哈密顿模拟、基态制备和属性估计以及量子线性系统。值得注意的是,尽管消耗的量子资源较少,但它们仍保持了可证明的量子优势。第三种技术使我们能够将离散和连续时间量子行走与它们的经典对应物联系起来。它还将最近开发的最优量子空间搜索算法与这两种框架统一起来,并开发出需要更少辅助量子比特的新算法。总之,我们的结果非常通用,可以很容易地应用于其他问题,甚至超出本文所考虑的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Flying Spin Qubits in Quantum Dot Arrays Driven by Spin-Orbit Interaction Time dependent Markovian master equation beyond the adiabatic limit Construction of perfect tensors using biunimodular vectors Inevitability of knowing less than nothing Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1