Fast Li+ De-Solvation Kinetics with PDDA Intercalated-Montmorillonite Hybrid Artificial Interface Layer on Cu Substrate for Lithium Metal Batteries in a Wide Climate Temperature

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-10 DOI:10.1002/adfm.202414835
Yuxi Shen, Jianan Gu, Zengquan Zhu, Linman Zhang, Xiao-Jun Lv, Yueming Li
{"title":"Fast Li+ De-Solvation Kinetics with PDDA Intercalated-Montmorillonite Hybrid Artificial Interface Layer on Cu Substrate for Lithium Metal Batteries in a Wide Climate Temperature","authors":"Yuxi Shen, Jianan Gu, Zengquan Zhu, Linman Zhang, Xiao-Jun Lv, Yueming Li","doi":"10.1002/adfm.202414835","DOIUrl":null,"url":null,"abstract":"The tolerance requirement of lithium metal batteries in harsh environments presents great challenges to electrode materials and electrolytes because temperature plays a significant effect in electrochemical processes. In this study, a new artificial layer on a copper current collector that boosts the de-solvation kinetics and provides electrostatic shielding effects is presented to enhance the electrochemical performance of lithium metal batteries. This new artificial layer is constructed with poly(diallyl dimethyl ammonium chloride) (PDDA) and exfoliated montmorillonite (MMT) nanosheets, which combine the advantages of both inorganic clay and organic polymer. Within this protective hybrid layer, the PDDA cations increase the interlayer spacing of MMT, broadening the diffusion pathways of Li<sup>+</sup> and accelerating their fast diffusion. Moreover, the PDDA-MMT protective layer facilitates Li<sup>+</sup> de-solvation at the interface of the Li anode and electrolyte, enabling the rapid and reversible plating/stripping of lithium metal. As a result, the as-prepared PDDA-MMT@Cu anode exhibits excellent stability, and good rate performance is achieved in a commercial electrolyte in the temperature range of −20–60 °C. By combining enhanced diffusion kinetics and electrostatic shielding as an artificial protective layer, this clay-polymer composite provides a synergistic interaction and offers new inspiration for the development of lithium metal batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414835","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tolerance requirement of lithium metal batteries in harsh environments presents great challenges to electrode materials and electrolytes because temperature plays a significant effect in electrochemical processes. In this study, a new artificial layer on a copper current collector that boosts the de-solvation kinetics and provides electrostatic shielding effects is presented to enhance the electrochemical performance of lithium metal batteries. This new artificial layer is constructed with poly(diallyl dimethyl ammonium chloride) (PDDA) and exfoliated montmorillonite (MMT) nanosheets, which combine the advantages of both inorganic clay and organic polymer. Within this protective hybrid layer, the PDDA cations increase the interlayer spacing of MMT, broadening the diffusion pathways of Li+ and accelerating their fast diffusion. Moreover, the PDDA-MMT protective layer facilitates Li+ de-solvation at the interface of the Li anode and electrolyte, enabling the rapid and reversible plating/stripping of lithium metal. As a result, the as-prepared PDDA-MMT@Cu anode exhibits excellent stability, and good rate performance is achieved in a commercial electrolyte in the temperature range of −20–60 °C. By combining enhanced diffusion kinetics and electrostatic shielding as an artificial protective layer, this clay-polymer composite provides a synergistic interaction and offers new inspiration for the development of lithium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在铜基底上使用 PDDA 互溶-蒙脱石混合人工界面层在宽气候温度条件下为金属锂电池提供快速的 Li+ 脱溶动力学
锂金属电池在恶劣环境中的耐受性要求对电极材料和电解质提出了巨大挑战,因为温度在电化学过程中起着重要作用。本研究在铜集流器上提出了一种新的人工层,它能提高去溶解动力学并提供静电屏蔽效果,从而提高锂金属电池的电化学性能。这种新的人工层是由聚(二烯丙基二甲基氯化铵)(PDDA)和剥离蒙脱土(MMT)纳米片构成的,结合了无机粘土和有机聚合物的优点。在这一混合保护层中,PDDA 阳离子增加了 MMT 的层间间距,拓宽了 Li+ 的扩散途径,加速了其快速扩散。此外,PDDA-MMT 保护层还能促进 Li+ 在锂阳极和电解液界面上的脱溶,从而实现锂金属的快速、可逆电镀/剥离。因此,制备的 PDDA-MMT@Cu 阳极具有出色的稳定性,在商用电解液中实现了良好的速率性能,温度范围为 -20 ℃-60 ℃。通过将增强的扩散动力学与作为人工保护层的静电屏蔽相结合,这种粘土-聚合物复合材料提供了一种协同作用,为锂金属电池的开发提供了新的灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
The Cribellate Nanofibrils of the Southern House Spider: Extremely Thin Natural Silks with Outstanding Extensibility Versatile Nanolights From Silicon, Carbon and Oxygen Hybrid System for Optical Applications Enhanced Salinity Gradient Energy Conversion by Photodegradable MXene/TiO2 Membrane Utilizing Saline Dye Wastewater Exploring Mechanoluminescence of Zinc Alkaline Earth Metal Oxysulfides from Fundamentals to Advanced Applications Construction of Multiphase Concave Tetrahedral PdInMo Nanocatalyst for Enhanced Alcohol Oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1