CoFe2O4-BaTiO3 core-shell-embedded flexible polymer composite as an efficient magnetoelectric energy harvester

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-10-10 DOI:10.1016/j.mtphys.2024.101567
Bitna Bae , Nagamalleswara Rao Alluri , Cheol Min Kim , Jungho Ryu , Gwang Hyeon Kim , Hyeon Jun Park , Changyeon Baek , Min-Ku Lee , Gyoung-Ja Lee , Geon-Tae Hwang , Kwi-Il Park
{"title":"CoFe2O4-BaTiO3 core-shell-embedded flexible polymer composite as an efficient magnetoelectric energy harvester","authors":"Bitna Bae ,&nbsp;Nagamalleswara Rao Alluri ,&nbsp;Cheol Min Kim ,&nbsp;Jungho Ryu ,&nbsp;Gwang Hyeon Kim ,&nbsp;Hyeon Jun Park ,&nbsp;Changyeon Baek ,&nbsp;Min-Ku Lee ,&nbsp;Gyoung-Ja Lee ,&nbsp;Geon-Tae Hwang ,&nbsp;Kwi-Il Park","doi":"10.1016/j.mtphys.2024.101567","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible magnetoelectric (ME) generators gained immense interest due to the broad applications in wearable and Internet of Things (IoT)-based devices. The key to achieving high energy conversion performance of 0–3 type ME composite films is the prevention of filler aggregation in the polymer matrix and accessing the full potential of intrinsic properties of filler. To achieve high performance, a flexible ME composite film was fabricated by homogeneous distribution of magnetostrictive CoFe<sub>2</sub>O<sub>4</sub>-BaTiO<sub>3</sub> core-shell (CBCS) fillers into piezoelectric polyvinylidene fluoride (PVDF) polymer. The ME composite film generates an enhanced energy conversion efficiency by optimizing the shell thickness of CBCS and maximizing the electroactive β-phase at the BaTiO<sub>3</sub> shell-PVDF interfacial region. The observed ME coefficient of the film reached up to 710 mV/cm∙Oe. Multiphysics simulations based on the finite element analysis were adopted to investigate the role of BaTiO<sub>3</sub> shell thickness on the performance of ME film. This study paves the way to achieve higher filler loading content in the ME composite films to develop an efficient, flexible ME generator for eco-friendly permanent power sources.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002438","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible magnetoelectric (ME) generators gained immense interest due to the broad applications in wearable and Internet of Things (IoT)-based devices. The key to achieving high energy conversion performance of 0–3 type ME composite films is the prevention of filler aggregation in the polymer matrix and accessing the full potential of intrinsic properties of filler. To achieve high performance, a flexible ME composite film was fabricated by homogeneous distribution of magnetostrictive CoFe2O4-BaTiO3 core-shell (CBCS) fillers into piezoelectric polyvinylidene fluoride (PVDF) polymer. The ME composite film generates an enhanced energy conversion efficiency by optimizing the shell thickness of CBCS and maximizing the electroactive β-phase at the BaTiO3 shell-PVDF interfacial region. The observed ME coefficient of the film reached up to 710 mV/cm∙Oe. Multiphysics simulations based on the finite element analysis were adopted to investigate the role of BaTiO3 shell thickness on the performance of ME film. This study paves the way to achieve higher filler loading content in the ME composite films to develop an efficient, flexible ME generator for eco-friendly permanent power sources.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为高效磁电能量收集器的 CoFe2O4-BaTiO3 芯壳嵌入式柔性聚合物复合材料
柔性磁电(ME)发电机在可穿戴设备和物联网(IoT)设备中的广泛应用引起了人们的极大兴趣。0-3 型 ME 复合薄膜要实现高能量转换性能,关键在于防止填料在聚合物基体中聚集,并充分发挥填料固有特性的潜力。为了实现高性能,我们将磁致伸缩 CoFe2O4-BaTiO3 核壳(CBCS)填料均匀分布在压电聚偏氟乙烯(PVDF)聚合物中,制备出了一种柔性 ME 复合薄膜。通过优化 CBCS 的壳厚度和最大化 BaTiO3 壳-PVDF 界面区域的电活性 β 相,ME 复合薄膜产生了更高的能量转换效率。观察到的薄膜 ME 系数高达 710 mV/cm∙Oe。基于有限元分析的多物理场模拟研究了 BaTiO3 壳厚度对 ME 薄膜性能的影响。这项研究为在 ME 复合薄膜中实现更高的填料含量以开发高效、灵活的 ME 发电机铺平了道路,从而为环保型永久电源提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Grain recovery facilitated low-angle grain boundaries and texture for high-performance BiSbTe alloys Superconducting memory and trapped magnetic flux in ternary lanthanum polyhydrides NiFe pyrophosphate enables long-term alkaline seawater oxidation at an ampere-level current density Impact of an annealing atmosphere on band-alignment of a plasma-enhanced atomic layer deposition-grown Ga2O3/SiC heterojunction Highly Stretchable, Low-Hysteresis, and Antifreeze Hydrogel for Low-Grade Thermal Energy Harvesting in Ionic Thermoelectric Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1