Hydrogel System with Independent Tailoring of Mechanics, CT, and US Contrasts for Affordable Medical Phantoms.

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-09-26 eCollection Date: 2024-10-07 DOI:10.1021/acsmaterialslett.4c01660
Haoyi Qiu, Jakob Nazarenus, Bernhard Egeler, Tom Thode, Firdaws Osman, Daniar Osmonov, Jörg Bahr, Sören Kaps, Frank-Andre Siebert, Reinhard Koch, Ulf Lützen, Rainer Adelung, Leonard Siebert
{"title":"Hydrogel System with Independent Tailoring of Mechanics, CT, and US Contrasts for Affordable Medical Phantoms.","authors":"Haoyi Qiu, Jakob Nazarenus, Bernhard Egeler, Tom Thode, Firdaws Osman, Daniar Osmonov, Jörg Bahr, Sören Kaps, Frank-Andre Siebert, Reinhard Koch, Ulf Lützen, Rainer Adelung, Leonard Siebert","doi":"10.1021/acsmaterialslett.4c01660","DOIUrl":null,"url":null,"abstract":"<p><p>Medical phantoms mimic aspects of procedures like computed tomography (CT), ultrasound (US) imaging, and surgical practices. However, the materials for current commercial phantoms are expensive and the fabrication with these is complex and lacks versatility. Therefore, existing material solutions are not suitable for creating patient-specific phantoms. We present a novel and cost-effective material system (utilizing ubiquitous sodium alginate hydrogel and coconut fat) with independently and accurately tailorable CT, US, and mechanical properties. By varying the concentration of alginate, cross-linker, and coconut fat, the radiological parameters and the elastic modulus were adjusted independently in a wide range. The independence was demonstrated by creating phantoms with features hidden in US, while visible in CT imaging and vice versa. This system is particularly beneficial in resource-scarce areas since the materials are cheap (<$ 1 USD/kg) and easy to obtain, offering realistic and versatile phantoms to practice surgeries and ultimately enhance patient care.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 10","pages":"4847-4853"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01660","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Medical phantoms mimic aspects of procedures like computed tomography (CT), ultrasound (US) imaging, and surgical practices. However, the materials for current commercial phantoms are expensive and the fabrication with these is complex and lacks versatility. Therefore, existing material solutions are not suitable for creating patient-specific phantoms. We present a novel and cost-effective material system (utilizing ubiquitous sodium alginate hydrogel and coconut fat) with independently and accurately tailorable CT, US, and mechanical properties. By varying the concentration of alginate, cross-linker, and coconut fat, the radiological parameters and the elastic modulus were adjusted independently in a wide range. The independence was demonstrated by creating phantoms with features hidden in US, while visible in CT imaging and vice versa. This system is particularly beneficial in resource-scarce areas since the materials are cheap (<$ 1 USD/kg) and easy to obtain, offering realistic and versatile phantoms to practice surgeries and ultimately enhance patient care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水凝胶系统可独立调整力学、CT 和 US 对比度,实现经济实惠的医学模型。
医学模型可以模拟计算机断层扫描(CT)、超声波(US)成像和外科手术等程序的各个方面。然而,目前的商用模型材料价格昂贵,而且制作工艺复杂,缺乏通用性。因此,现有的材料解决方案并不适合制作病人专用模型。我们提出了一种新颖且经济高效的材料系统(利用无处不在的海藻酸钠水凝胶和椰子脂肪),它具有独立且可精确定制的 CT、US 和机械性能。通过改变海藻酸钠、交联剂和椰子脂肪的浓度,放射学参数和弹性模量可在很大范围内独立调整。通过创建在 US 中隐藏特征、而在 CT 成像中可见的模型,反之亦然,证明了这种独立性。该系统尤其适用于资源匮乏的地区,因为材料便宜 (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Excitation Photon Energy-Dependent Carrier Multiplication in Graphite Combining Electron Microscopy and Elemental Mapping for the Investigation of Zeolite Crystallization Multiscale Covalent Organic Framework (COF) Films for Task-Specific Sensing in Multicomponent Gases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1