Yao Fu, Yuyan Ji, Yawen Tian, Fan Zhang, Nan Sheng, Jiayin Dai, Yitao Pan
{"title":"Unveiling Priority Emerging PFAS in Taihu Lake Using Integrated Nontarget Screening, Target Analysis, and Risk Characterization.","authors":"Yao Fu, Yuyan Ji, Yawen Tian, Fan Zhang, Nan Sheng, Jiayin Dai, Yitao Pan","doi":"10.1021/acs.est.4c06731","DOIUrl":null,"url":null,"abstract":"<p><p>Amidst tightening regulations, the proliferation of next-generation per- and polyfluoroalkyl substances (PFAS) necessitates a deeper understanding of their environmental fate and potential risks. Here, we conducted a comprehensive assessment of PFAS in the water and sediment of Taihu Lake, incorporating both nontarget and target screening, seasonal and geographical variation analysis, and risk prioritization. A total of 58 PFAS from 13 classes were identified, revealing complex PFAS contamination. In addition to short-chain perfluoroalkyl carboxylates (PFCAs) and sulfonates (PFSAs), bis(trifluoromethanesulfonyl)imide (Ntf2) and perfluoro-2,5-dimethyl-3,6-dioxo-heptanoic acid (C7 HFPO-TA) exhibited relatively high concentrations in water, with median values of 21.7 and 5.72 ng/L, respectively. Seasonal and geographical variation analysis revealed elevated levels of C7 HFPO-TA, Ntf2, and perfluorohexanoic acid (PFHxA) in the northeastern areas, suggesting transport via water diversion project. Multicriteria risk prioritization identified four high priority PFAS (Ntf2, C7 HFPO-TA, PFHxA, and perfluorooctanoic acid (PFOA)) in water and two high priority PFAS (hexafluoropropylene oxide dimer acid (HFPO-DA) and PFHxA) in sediment. Overall, this study revealed Ntf2 and C7 HFPO-TA as priority PFAS in Taihu Lake, underscoring the urgent necessity of evaluating risks associated with these emerging PFAS.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":"18980-18991"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06731","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Amidst tightening regulations, the proliferation of next-generation per- and polyfluoroalkyl substances (PFAS) necessitates a deeper understanding of their environmental fate and potential risks. Here, we conducted a comprehensive assessment of PFAS in the water and sediment of Taihu Lake, incorporating both nontarget and target screening, seasonal and geographical variation analysis, and risk prioritization. A total of 58 PFAS from 13 classes were identified, revealing complex PFAS contamination. In addition to short-chain perfluoroalkyl carboxylates (PFCAs) and sulfonates (PFSAs), bis(trifluoromethanesulfonyl)imide (Ntf2) and perfluoro-2,5-dimethyl-3,6-dioxo-heptanoic acid (C7 HFPO-TA) exhibited relatively high concentrations in water, with median values of 21.7 and 5.72 ng/L, respectively. Seasonal and geographical variation analysis revealed elevated levels of C7 HFPO-TA, Ntf2, and perfluorohexanoic acid (PFHxA) in the northeastern areas, suggesting transport via water diversion project. Multicriteria risk prioritization identified four high priority PFAS (Ntf2, C7 HFPO-TA, PFHxA, and perfluorooctanoic acid (PFOA)) in water and two high priority PFAS (hexafluoropropylene oxide dimer acid (HFPO-DA) and PFHxA) in sediment. Overall, this study revealed Ntf2 and C7 HFPO-TA as priority PFAS in Taihu Lake, underscoring the urgent necessity of evaluating risks associated with these emerging PFAS.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.