{"title":"A machine learning classifier-based approach for diabetes mellitus risk prediction.","authors":"Jai Kumar B, Mohanasundaram Ranganathan","doi":"10.1088/2057-1976/ad857b","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, Diabetes Mellitus (DM) can be life-threatening due to the dietary habits and lifestyle choices of individuals. Diabetes is characterised by elevated levels of glucose in the blood and an excess of protein in the blood. Poor eating habits and lifestyles are largely responsible for the rise in overweight, obesity, and various related conditions. This study investigated many diabetes-related risk forecasting techniques and algorithms. The eight machine learning (ML) algorithms used the diabetes dataset to test various prediction techniques, including a Support Vector Classifier, gradient-boosting, multilayer perceptron, random forest, K-nearest neighbors, logistic regression, extreme gradient boosting, and decision tree. To enhance the diabetic prediction ability of the model, we suggested using Feature Engineering (FE) and feature scaling. For our investigation, we utilized the Mendeley dataset on diabetes to assess the capacity of the model to predict diabetes. We developed a model by using Python programming and eight classification techniques. The Random Forest with 99.21%, Gradient Boosting with 99.61%, Extreme Gradient Boosting, and Decision Tree achieved the highest F1 score (99.81%), accuracy rate (99.80%), precision (99.81%), and recall (99.81%) of all classification approaches.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad857b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, Diabetes Mellitus (DM) can be life-threatening due to the dietary habits and lifestyle choices of individuals. Diabetes is characterised by elevated levels of glucose in the blood and an excess of protein in the blood. Poor eating habits and lifestyles are largely responsible for the rise in overweight, obesity, and various related conditions. This study investigated many diabetes-related risk forecasting techniques and algorithms. The eight machine learning (ML) algorithms used the diabetes dataset to test various prediction techniques, including a Support Vector Classifier, gradient-boosting, multilayer perceptron, random forest, K-nearest neighbors, logistic regression, extreme gradient boosting, and decision tree. To enhance the diabetic prediction ability of the model, we suggested using Feature Engineering (FE) and feature scaling. For our investigation, we utilized the Mendeley dataset on diabetes to assess the capacity of the model to predict diabetes. We developed a model by using Python programming and eight classification techniques. The Random Forest with 99.21%, Gradient Boosting with 99.61%, Extreme Gradient Boosting, and Decision Tree achieved the highest F1 score (99.81%), accuracy rate (99.80%), precision (99.81%), and recall (99.81%) of all classification approaches.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.