{"title":"Neural representations of beat and rhythm in motor and association regions.","authors":"Joshua D Hoddinott, Jessica A Grahn","doi":"10.1093/cercor/bhae406","DOIUrl":null,"url":null,"abstract":"<p><p>Humans perceive a pulse, or beat, underlying musical rhythm. Beat strength correlates with activity in the basal ganglia and supplementary motor area, suggesting these regions support beat perception. However, the basal ganglia and supplementary motor area are part of a general rhythm and timing network (regardless of the beat) and may also represent basic rhythmic features (e.g. tempo, number of onsets). To characterize the encoding of beat-related and other basic rhythmic features, we used representational similarity analysis. During functional magnetic resonance imaging, participants heard 12 rhythms-4 strong-beat, 4 weak-beat, and 4 nonbeat. Multi-voxel activity patterns for each rhythm were tested to determine which brain areas were beat-sensitive: those in which activity patterns showed greater dissimilarities between rhythms of different beat strength than between rhythms of similar beat strength. Indeed, putamen and supplementary motor area activity patterns were significantly dissimilar for strong-beat and nonbeat conditions. Next, we tested whether basic rhythmic features or models of beat strength (counterevidence scores) predicted activity patterns. We found again that activity pattern dissimilarity in supplementary motor area and putamen correlated with beat strength models, not basic features. Beat strength models also correlated with activity pattern dissimilarities in the inferior frontal gyrus and inferior parietal lobe, though these regions encoded beat and rhythm simultaneously and were not driven by beat alone.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Humans perceive a pulse, or beat, underlying musical rhythm. Beat strength correlates with activity in the basal ganglia and supplementary motor area, suggesting these regions support beat perception. However, the basal ganglia and supplementary motor area are part of a general rhythm and timing network (regardless of the beat) and may also represent basic rhythmic features (e.g. tempo, number of onsets). To characterize the encoding of beat-related and other basic rhythmic features, we used representational similarity analysis. During functional magnetic resonance imaging, participants heard 12 rhythms-4 strong-beat, 4 weak-beat, and 4 nonbeat. Multi-voxel activity patterns for each rhythm were tested to determine which brain areas were beat-sensitive: those in which activity patterns showed greater dissimilarities between rhythms of different beat strength than between rhythms of similar beat strength. Indeed, putamen and supplementary motor area activity patterns were significantly dissimilar for strong-beat and nonbeat conditions. Next, we tested whether basic rhythmic features or models of beat strength (counterevidence scores) predicted activity patterns. We found again that activity pattern dissimilarity in supplementary motor area and putamen correlated with beat strength models, not basic features. Beat strength models also correlated with activity pattern dissimilarities in the inferior frontal gyrus and inferior parietal lobe, though these regions encoded beat and rhythm simultaneously and were not driven by beat alone.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.