{"title":"tDCS and local scalp cooling do not change corticomotor and intracortical excitability in healthy humans","authors":"","doi":"10.1016/j.clinph.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Scalp cooling might increase the long-term potentiation (LTP)-like effect of transcranial direct current stimulation (tDCS) by reducing the threshold for after-effects according to metaplasticity and increasing electrical current density reaching the cortical neurons. We aimed to investigate whether priming scalp cooling potentiates the tDCS after-effect on motor cortex excitability.</div></div><div><h3>Methods</h3><div>This study had a randomized, parallel-arms, sham-controlled, double-blinded design with an adequately powered sample of 105 healthy subjects. Corticomotor and intracortical excitability were assessed with motor evoked potentials (MEP) from transcranial magnetic stimulation (TMS) in short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) paradigms. Subjects were randomly allocated into six intervention groups, including anodal and cathodal tDCS (1-mA/20-min), scalp cooling, and sham. MEPs were recorded before, immediately, and 15 min after the interventions.</div></div><div><h3>Results</h3><div>We did not observe changes in MEP amplitude from single-pulse TMS, SICI, and ICF with any intervention protocol.</div></div><div><h3>Conclusion</h3><div>Anodal and cathodal tDCS did not have an LTP-like neuromodulatory effect on corticospinal and did not provide detectable GABAergic and glutamatergic neurotransmission changes, which were not influenced by priming scalp cooling.</div></div><div><h3>Significance</h3><div>We provide strong evidence that tDCS (1-mA/20-min) does not alter corticomotor and intracortical excitability with or without priming scalp cooling.</div></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388245724002827","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Scalp cooling might increase the long-term potentiation (LTP)-like effect of transcranial direct current stimulation (tDCS) by reducing the threshold for after-effects according to metaplasticity and increasing electrical current density reaching the cortical neurons. We aimed to investigate whether priming scalp cooling potentiates the tDCS after-effect on motor cortex excitability.
Methods
This study had a randomized, parallel-arms, sham-controlled, double-blinded design with an adequately powered sample of 105 healthy subjects. Corticomotor and intracortical excitability were assessed with motor evoked potentials (MEP) from transcranial magnetic stimulation (TMS) in short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) paradigms. Subjects were randomly allocated into six intervention groups, including anodal and cathodal tDCS (1-mA/20-min), scalp cooling, and sham. MEPs were recorded before, immediately, and 15 min after the interventions.
Results
We did not observe changes in MEP amplitude from single-pulse TMS, SICI, and ICF with any intervention protocol.
Conclusion
Anodal and cathodal tDCS did not have an LTP-like neuromodulatory effect on corticospinal and did not provide detectable GABAergic and glutamatergic neurotransmission changes, which were not influenced by priming scalp cooling.
Significance
We provide strong evidence that tDCS (1-mA/20-min) does not alter corticomotor and intracortical excitability with or without priming scalp cooling.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.