{"title":"EphB2, EphB4, and ephrin-B1 expression and localization in postnatal developing epididymis in mice.","authors":"Md Royhan Gofur, Kazushige Ogawa","doi":"10.1002/dvdy.752","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Eph receptors and ephrin ligands, the transmembrane proteins, function as a mechanism of communication between cells. Therefore, we intended to explore the expression array of EphB2 and EphB4 receptors and ephrin-B1 ligand in postnatal developing mouse epididymis during 1 day to 8 weeks using RT-PCR amplification and immunofluorescence staining.</p><p><strong>Results: </strong>RT-PCR analysis indicated that the expression levels of EphB2, EphB4, and ephrin-B1 in the epididymis declined with the advancement of age during the initial phases of postnatal development and stayed relatively near to adult levels until 4 weeks. We discovered that the predominant compartments expressing EphB2/B4 and ephrin-B1 emerged in the excurrent duct epithelia of postnatal developing epididymis until 3 weeks. Consequently, even before spermatozoa reach the excurrent duct in epididymis, at the age of 3 weeks, the epididymal excurrent duct system exhibits characteristics similar to those of an adult in terms of expression of EphB2/B4 and ephrin-B1. Moreover, ephrin-B1 was expressed in epididymal epithelial cells throughout the development and EphB4 was expressed only in early postnatal stages while basal cells expressed EphB4 throughout the postnatal development.</p><p><strong>Conclusion: </strong>The study represents the first expression analysis of ephrin-B1, EphB2, and EphB4 in the normal mouse epididymis during the postnatal development.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/dvdy.752","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Eph receptors and ephrin ligands, the transmembrane proteins, function as a mechanism of communication between cells. Therefore, we intended to explore the expression array of EphB2 and EphB4 receptors and ephrin-B1 ligand in postnatal developing mouse epididymis during 1 day to 8 weeks using RT-PCR amplification and immunofluorescence staining.
Results: RT-PCR analysis indicated that the expression levels of EphB2, EphB4, and ephrin-B1 in the epididymis declined with the advancement of age during the initial phases of postnatal development and stayed relatively near to adult levels until 4 weeks. We discovered that the predominant compartments expressing EphB2/B4 and ephrin-B1 emerged in the excurrent duct epithelia of postnatal developing epididymis until 3 weeks. Consequently, even before spermatozoa reach the excurrent duct in epididymis, at the age of 3 weeks, the epididymal excurrent duct system exhibits characteristics similar to those of an adult in terms of expression of EphB2/B4 and ephrin-B1. Moreover, ephrin-B1 was expressed in epididymal epithelial cells throughout the development and EphB4 was expressed only in early postnatal stages while basal cells expressed EphB4 throughout the postnatal development.
Conclusion: The study represents the first expression analysis of ephrin-B1, EphB2, and EphB4 in the normal mouse epididymis during the postnatal development.
期刊介绍:
Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.