Cerebellar activity predicts vocalization in fruit bats.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2024-11-04 Epub Date: 2024-10-09 DOI:10.1016/j.cub.2024.09.033
Shivani Hariharan, Eugenia González Palomares, Susanne S Babl, Luciana López-Jury, Julio C Hechavarria
{"title":"Cerebellar activity predicts vocalization in fruit bats.","authors":"Shivani Hariharan, Eugenia González Palomares, Susanne S Babl, Luciana López-Jury, Julio C Hechavarria","doi":"10.1016/j.cub.2024.09.033","DOIUrl":null,"url":null,"abstract":"<p><p>Echolocating bats exhibit remarkable auditory behaviors, enabled by adaptations both within and outside their auditory system. Yet research on echolocating bats has focused mostly on brain areas that belong to the classic ascending auditory pathway. This study provides direct evidence linking the cerebellum, an evolutionarily ancient and non-classic auditory structure, to vocalization and hearing. We report that in the fruit-eating bat Carollia perspicillata, external sounds can evoke cerebellar responses with latencies below 20 ms. Such fast responses are indicative of early inputs to the bat cerebellum. After establishing fruit-eating bats as a good model to study cerebellar auditory responses, we searched for a neural correlate of vocal production within the cerebellum. We investigated spike trains and field potentials occurring before and after vocalization and found that the type of sound produced (echolocation pulses or communication calls) can be decoded from pre-vocal and post-vocal neural signals, with prediction accuracies that reach above 85%. The latter provides a direct correlate of vocalization in an ancient motor-coordination structure that lies outside of the classic ascending auditory pathway. Taken together, our findings provide evidence of specializations for vocalization and hearing in the cerebellum of an auditory specialist.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.09.033","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Echolocating bats exhibit remarkable auditory behaviors, enabled by adaptations both within and outside their auditory system. Yet research on echolocating bats has focused mostly on brain areas that belong to the classic ascending auditory pathway. This study provides direct evidence linking the cerebellum, an evolutionarily ancient and non-classic auditory structure, to vocalization and hearing. We report that in the fruit-eating bat Carollia perspicillata, external sounds can evoke cerebellar responses with latencies below 20 ms. Such fast responses are indicative of early inputs to the bat cerebellum. After establishing fruit-eating bats as a good model to study cerebellar auditory responses, we searched for a neural correlate of vocal production within the cerebellum. We investigated spike trains and field potentials occurring before and after vocalization and found that the type of sound produced (echolocation pulses or communication calls) can be decoded from pre-vocal and post-vocal neural signals, with prediction accuracies that reach above 85%. The latter provides a direct correlate of vocalization in an ancient motor-coordination structure that lies outside of the classic ascending auditory pathway. Taken together, our findings provide evidence of specializations for vocalization and hearing in the cerebellum of an auditory specialist.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小脑活动可预测果蝠的发声。
回声定位蝙蝠表现出非凡的听觉行为,这得益于其听觉系统内外的适应性。然而,对回声定位蝙蝠的研究主要集中在属于经典上升听觉通路的大脑区域。本研究提供了直接证据,证明小脑这一进化古老的非经典听觉结构与发声和听觉有关。我们报告说,在食果蝙蝠Carollia perspicillata中,外部声音可以唤起小脑反应,其潜伏期低于20毫秒。这种快速反应表明了蝙蝠小脑的早期输入。在确定食果蝠是研究小脑听觉反应的良好模型后,我们在小脑内寻找发声的神经相关因素。我们研究了发声前后出现的尖峰列车和场电位,发现声音的类型(回声定位脉冲或交流呼叫)可以从发声前和发声后的神经信号中解码,预测准确率达到 85% 以上。后者在经典的上升听觉通路之外的古老运动协调结构中提供了发声的直接相关性。总之,我们的研究结果为听觉专家的小脑发声和听觉特化提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
Parallel maturation of rodent hippocampal memory and CA1 task representations. Dynamic shape-shifting of the single-celled eukaryotic predator Lacrymaria via unconventional cytoskeletal components. Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic. Regulation of outer kinetochore assembly during meiosis I and II by CENP-A and KNL-2/M18BP1 in C. elegans oocytes. Positive serial dependence in ratings of food images for appeal and calories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1