{"title":"Chromosome-level genome of diamondback terrapin provides insight into the genetic basis of salinity adaptation.","authors":"Hui Jiang, Zhongkai Wang, Xiaofei Zhai, Guangwei Ma, Tongliang Wang, Fei Kong, Wenkai Luo, Ziwei Yu, Haorong Li, Yandong Ren, Rui Guo, Li Jian, Longhui Zhao, Ziye Zuo, Shoupeng Pan, Zan Qi, Yuxin Zhang, Zhuoya Liu, Dingqi Rao, Yongxin Li, Jichao Wang","doi":"10.1111/1749-4877.12898","DOIUrl":null,"url":null,"abstract":"<p><p>Diamondback terrapins (Malaclemys terrapin centrata) exhibit strong environmental adaptability and live in both freshwater and saltwater. However, the genetic basis of this adaptability has not been the focus of research. In this study, we successfully constructed a ∼2.21-Gb chromosome-level genome assembly for M. t. centrata using high-coverage and high-depth genomic sequencing data generated on multiple platforms. The M. t. centrata genome contains 25 chromosomes and the scaffold N50 of ∼143.75 Mb, demonstrating high continuity and accuracy. In total, 53.82% of the genome assembly was composed of repetitive sequences, and 22 435 protein-coding genes were predicted. Our phylogenetic analysis indicated that M. t. centrata was closely related to the red-eared slider turtle (Trachemys scripta elegans), with divergence approximately ∼23.6 million years ago (Mya) during the early Neogene period of the Cenozoic era. The population size of M. t. centrata decreased significantly over the past ∼14 Mya during the Cenozoic era. Comparative genomic analysis indicated that 36 gene families related to ion transport were expanded and several genes (AQP3, solute carrier subfamily, and potassium channel genes) underwent specific amino acid site mutations in the M. t. centrata genome. Changes to these ion transport-related genes may have contributed to the remarkable salinity adaptability of diamondback terrapin. The results of this study not only provide a high-quality reference genome for M. t. centrata but also elucidate the possible genetic basis for salinity adaptation in this species.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12898","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diamondback terrapins (Malaclemys terrapin centrata) exhibit strong environmental adaptability and live in both freshwater and saltwater. However, the genetic basis of this adaptability has not been the focus of research. In this study, we successfully constructed a ∼2.21-Gb chromosome-level genome assembly for M. t. centrata using high-coverage and high-depth genomic sequencing data generated on multiple platforms. The M. t. centrata genome contains 25 chromosomes and the scaffold N50 of ∼143.75 Mb, demonstrating high continuity and accuracy. In total, 53.82% of the genome assembly was composed of repetitive sequences, and 22 435 protein-coding genes were predicted. Our phylogenetic analysis indicated that M. t. centrata was closely related to the red-eared slider turtle (Trachemys scripta elegans), with divergence approximately ∼23.6 million years ago (Mya) during the early Neogene period of the Cenozoic era. The population size of M. t. centrata decreased significantly over the past ∼14 Mya during the Cenozoic era. Comparative genomic analysis indicated that 36 gene families related to ion transport were expanded and several genes (AQP3, solute carrier subfamily, and potassium channel genes) underwent specific amino acid site mutations in the M. t. centrata genome. Changes to these ion transport-related genes may have contributed to the remarkable salinity adaptability of diamondback terrapin. The results of this study not only provide a high-quality reference genome for M. t. centrata but also elucidate the possible genetic basis for salinity adaptation in this species.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations