Better Transcriptomic Stability and Broader Transcriptomic Thermal Response Range Drive the Greater Thermal Tolerance in a Global Invasive Turtle Relative to Native Turtle.
Changyi Zhang, Shufen Jiang, Kenneth B Storey, Wenyi Zhang
{"title":"Better Transcriptomic Stability and Broader Transcriptomic Thermal Response Range Drive the Greater Thermal Tolerance in a Global Invasive Turtle Relative to Native Turtle.","authors":"Changyi Zhang, Shufen Jiang, Kenneth B Storey, Wenyi Zhang","doi":"10.1111/1749-4877.12959","DOIUrl":null,"url":null,"abstract":"<p><p>Greater thermal tolerance of invasive species benefits their survival and spread under extreme climate events, especially under global warming. Revealing the mechanisms underlying the interspecific differences in thermal tolerance between invasive and native species can help understand the invasion process and predict potential invaders. Here, we link the changes in global transcriptomics and antioxidant defense at multiple temperatures with the differences in thermal limits in the juveniles of a successful globally invasive turtle, Trachemys scripta elegans, and a native turtle in China, Mauremys reevesii. The two species show different thermal tolerances and have co-existed in habitats with the risk of overheating. The majority of the transcriptional response to thermal stress is conserved in the two turtle species, including protein folding or DNA damage responses activated under relatively moderate thermal stress and regulation of the cell cycle and apoptosis during severe thermal stress. Greater thermal tolerance of T. scripta elegans can be associated with a more stable global transcriptome during thermal stress, except for necessary stress responses, and a broader thermal range of continuous up-regulation of the core mechanisms promoting survival under thermal stress, mainly protein folding and negative regulation of apoptosis. Under extreme hot conditions, the opposite change trends of genes involved in survival mechanisms during thermal stress between invasive and native turtles can be due to differences in energy turnover. The present study provides insights into the mechanisms of physiological differences between invasive and native species given global transcriptional changes and helps understand successful invasion and predict potential invasive species.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12959","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Greater thermal tolerance of invasive species benefits their survival and spread under extreme climate events, especially under global warming. Revealing the mechanisms underlying the interspecific differences in thermal tolerance between invasive and native species can help understand the invasion process and predict potential invaders. Here, we link the changes in global transcriptomics and antioxidant defense at multiple temperatures with the differences in thermal limits in the juveniles of a successful globally invasive turtle, Trachemys scripta elegans, and a native turtle in China, Mauremys reevesii. The two species show different thermal tolerances and have co-existed in habitats with the risk of overheating. The majority of the transcriptional response to thermal stress is conserved in the two turtle species, including protein folding or DNA damage responses activated under relatively moderate thermal stress and regulation of the cell cycle and apoptosis during severe thermal stress. Greater thermal tolerance of T. scripta elegans can be associated with a more stable global transcriptome during thermal stress, except for necessary stress responses, and a broader thermal range of continuous up-regulation of the core mechanisms promoting survival under thermal stress, mainly protein folding and negative regulation of apoptosis. Under extreme hot conditions, the opposite change trends of genes involved in survival mechanisms during thermal stress between invasive and native turtles can be due to differences in energy turnover. The present study provides insights into the mechanisms of physiological differences between invasive and native species given global transcriptional changes and helps understand successful invasion and predict potential invasive species.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations