TrustEMG-Net: Using Representation-Masking Transformer with U-Net for Surface Electromyography Enhancement.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-10-10 DOI:10.1109/JBHI.2024.3475817
Kuan-Chen Wang, Kai-Chun Liu, Ping-Cheng Yeh, Sheng-Yu Peng, Yu Tsao
{"title":"TrustEMG-Net: Using Representation-Masking Transformer with U-Net for Surface Electromyography Enhancement.","authors":"Kuan-Chen Wang, Kai-Chun Liu, Ping-Cheng Yeh, Sheng-Yu Peng, Yu Tsao","doi":"10.1109/JBHI.2024.3475817","DOIUrl":null,"url":null,"abstract":"<p><p>Surface electromyography (sEMG) is a widely employed bio-signal that captures human muscle activity via electrodes placed on the skin. Several studies have proposed methods to remove sEMG contaminants, as non-invasive measurements render sEMG susceptible to various contaminants. However, these approaches often rely on heuristic-based optimization and are sensitive to the contaminant type. A more potent, robust, and generalized sEMG denoising approach should be developed for various healthcare and human-computer interaction applications. This paper proposes a novel neural network (NN)-based sEMG denoising method called TrustEMG-Net. It leverages the potent nonlinear mapping capability and data-driven nature of NNs. TrustEMG-Net adopts a denoising autoencoder structure by combining U-Net with a Transformer encoder using a representation-masking approach. The proposed approach is evaluated using the Ninapro sEMG database with five common contamination types and signal-to-noise ratio (SNR) conditions. Compared with existing sEMG denoising methods, TrustEMG-Net achieves exceptional performance across the five evaluation metrics, exhibiting a minimum improvement of 20%. Its superiority is consistent under various conditions, including SNRs ranging from -14 to 2 dB and five contaminant types. An ablation study further proves that the design of TrustEMG-Net contributes to its optimality, providing high-quality sEMG and serving as an effective, robust, and generalized denoising solution for sEMG applications.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3475817","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Surface electromyography (sEMG) is a widely employed bio-signal that captures human muscle activity via electrodes placed on the skin. Several studies have proposed methods to remove sEMG contaminants, as non-invasive measurements render sEMG susceptible to various contaminants. However, these approaches often rely on heuristic-based optimization and are sensitive to the contaminant type. A more potent, robust, and generalized sEMG denoising approach should be developed for various healthcare and human-computer interaction applications. This paper proposes a novel neural network (NN)-based sEMG denoising method called TrustEMG-Net. It leverages the potent nonlinear mapping capability and data-driven nature of NNs. TrustEMG-Net adopts a denoising autoencoder structure by combining U-Net with a Transformer encoder using a representation-masking approach. The proposed approach is evaluated using the Ninapro sEMG database with five common contamination types and signal-to-noise ratio (SNR) conditions. Compared with existing sEMG denoising methods, TrustEMG-Net achieves exceptional performance across the five evaluation metrics, exhibiting a minimum improvement of 20%. Its superiority is consistent under various conditions, including SNRs ranging from -14 to 2 dB and five contaminant types. An ablation study further proves that the design of TrustEMG-Net contributes to its optimality, providing high-quality sEMG and serving as an effective, robust, and generalized denoising solution for sEMG applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TrustEMG-Net:使用表征-屏蔽转换器和 U-Net 增强表面肌电图。
表面肌电图(sEMG)是一种广泛使用的生物信号,它通过放置在皮肤上的电极捕捉人体的肌肉活动。一些研究提出了去除 sEMG 杂质的方法,因为非侵入式测量使 sEMG 容易受到各种杂质的影响。不过,这些方法通常依赖于启发式优化,对污染物类型很敏感。应针对各种医疗保健和人机交互应用开发一种更有效、稳健和通用的 sEMG 去噪方法。本文提出了一种基于神经网络(NN)的新型 sEMG 去噪方法,称为 TrustEMG-Net。它充分利用了神经网络强大的非线性映射能力和数据驱动特性。TrustEMG-Net 采用去噪自动编码器结构,通过表示掩码方法将 U-Net 与 Transformer 编码器相结合。我们使用 Ninapro sEMG 数据库对所提出的方法进行了评估,该数据库包含五种常见的污染类型和信噪比(SNR)条件。与现有的 sEMG 去噪方法相比,TrustEMG-Net 在五个评估指标上都取得了优异的性能,至少提高了 20%。在 SNR 为 -14 到 2 dB 以及五种污染物类型等各种条件下,其优越性始终如一。一项消融研究进一步证明,TrustEMG-Net 的设计有助于实现其最优性,从而提供高质量的 sEMG,并为 sEMG 应用提供有效、稳健和通用的去噪解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing platform. Biomedical Information Integration via Adaptive Large Language Model Construction. BloodPatrol: Revolutionizing Blood Cancer Diagnosis - Advanced Real-Time Detection Leveraging Deep Learning & Cloud Technologies. EEG Detection and Prediction of Freezing of Gait in Parkinson's Disease Based on Spatiotemporal Coherent Modes. Functional Data Analysis of Hand Rotation for Open Surgical Suturing Skill Assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1