LTF ameliorates cartilage endplate degeneration by suppressing calcification, senescence and matrix degradation through the JAK2/STAT3 pathway

Tao Li, Yuchi Liu, Jian Cao, Chongzhi Pan, Rui Ding, Jiangminghao Zhao, Jiahao Liu, Dingwen He, Jingyu Jia, Xigao Cheng
{"title":"LTF ameliorates cartilage endplate degeneration by suppressing calcification, senescence and matrix degradation through the JAK2/STAT3 pathway","authors":"Tao Li,&nbsp;Yuchi Liu,&nbsp;Jian Cao,&nbsp;Chongzhi Pan,&nbsp;Rui Ding,&nbsp;Jiangminghao Zhao,&nbsp;Jiahao Liu,&nbsp;Dingwen He,&nbsp;Jingyu Jia,&nbsp;Xigao Cheng","doi":"10.1111/jcmm.18267","DOIUrl":null,"url":null,"abstract":"<p>Intervertebral disc degeneration (IDD)-induced cervical and lumbar herniations are debilitating diseases. The function of intervertebral disc (IVD) mainly depends on the cartilage endplate (CEP), which provides support and waste removal. Therefore, IDD stems from the degeneration of CEP. Our study shows that the expression of lactotransferrin (LTF), an iron-binding protein, is significantly decreased in degenerated human and rat CEP tissues. In addition, we found that LTF knockdown promoted calcification, senescence, and extracellular matrix (ECM) degradation in human endplate chondrocytes. Furthermore, the in vivo experiment results confirmed that the JAK2/STAT3 pathway inhibitor AG490 significantly reversed these effects. In addition to investigating the role and mechanism of LTF in CEP degeneration, this study provides a theoretical basis and experimental evidence to improve IDD treatment.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 19","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.18267","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.18267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intervertebral disc degeneration (IDD)-induced cervical and lumbar herniations are debilitating diseases. The function of intervertebral disc (IVD) mainly depends on the cartilage endplate (CEP), which provides support and waste removal. Therefore, IDD stems from the degeneration of CEP. Our study shows that the expression of lactotransferrin (LTF), an iron-binding protein, is significantly decreased in degenerated human and rat CEP tissues. In addition, we found that LTF knockdown promoted calcification, senescence, and extracellular matrix (ECM) degradation in human endplate chondrocytes. Furthermore, the in vivo experiment results confirmed that the JAK2/STAT3 pathway inhibitor AG490 significantly reversed these effects. In addition to investigating the role and mechanism of LTF in CEP degeneration, this study provides a theoretical basis and experimental evidence to improve IDD treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LTF通过JAK2/STAT3途径抑制钙化、衰老和基质降解,从而改善软骨终板退化。
椎间盘退变(IDD)引起的颈椎和腰椎突出症是一种使人衰弱的疾病。椎间盘(IVD)的功能主要依赖于软骨终板(CEP),它起着支撑和清除废物的作用。因此,IDD源于CEP的退化。我们的研究表明,在退化的人类和大鼠 CEP 组织中,铁结合蛋白乳转铁蛋白(LTF)的表达明显下降。此外,我们还发现敲除 LTF 会促进人终板软骨细胞的钙化、衰老和细胞外基质(ECM)降解。此外,体内实验结果证实,JAK2/STAT3 通路抑制剂 AG490 能显著逆转这些影响。除了研究LTF在CEP变性中的作用和机制,这项研究还为改善IDD治疗提供了理论依据和实验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
期刊最新文献
The oncogenic functions of SPARCL1 in bladder cancer Issue Information Repurposing flubendazole for glioblastoma ferroptosis by affecting xCT and TFRC proteins Esculetin rebalances M1/M2 macrophage polarization to treat sepsis-induced acute lung injury through regulating metabolic reprogramming Integration analysis using bioinformatics and experimental validation on cellular signalling for sex differences of hypertrophic cardiomyopathy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1