Catalytic asymmetric fragmentation of cyclopropanes.

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-10-11 Epub Date: 2024-10-10 DOI:10.1126/science.adp9061
Ravindra Krushnaji Raut, Satoshi Matsutani, Fuxing Shi, Shuta Kataoka, Margareta Poje, Benjamin Mitschke, Satoshi Maeda, Nobuya Tsuji, Benjamin List
{"title":"Catalytic asymmetric fragmentation of cyclopropanes.","authors":"Ravindra Krushnaji Raut, Satoshi Matsutani, Fuxing Shi, Shuta Kataoka, Margareta Poje, Benjamin Mitschke, Satoshi Maeda, Nobuya Tsuji, Benjamin List","doi":"10.1126/science.adp9061","DOIUrl":null,"url":null,"abstract":"<p><p>The stereoselective activation of alkanes constitutes a long-standing and grand challenge for chemistry. Although metal-containing enzymes oxidize alkanes with remarkable ease and selectivity, chemical approaches have largely been limited to transition metal-based catalytic carbon-hydrogen functionalizations. Alkanes can be protonated to form pentacoordinated carbonium ions and fragmented into smaller hydrocarbons in the presence of strong Brønsted acids. However, catalytic stereocontrol over such reactions has not previously been accomplished. We show here that strong and confined acids catalyze highly enantioselective fragmentations of a variety of cyclopropanes into the corresponding alkenes, expanding the boundaries of catalytic selective alkane activation. Computational studies suggest the involvement of the long-debated cycloproponium ions.</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adp9061","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The stereoselective activation of alkanes constitutes a long-standing and grand challenge for chemistry. Although metal-containing enzymes oxidize alkanes with remarkable ease and selectivity, chemical approaches have largely been limited to transition metal-based catalytic carbon-hydrogen functionalizations. Alkanes can be protonated to form pentacoordinated carbonium ions and fragmented into smaller hydrocarbons in the presence of strong Brønsted acids. However, catalytic stereocontrol over such reactions has not previously been accomplished. We show here that strong and confined acids catalyze highly enantioselective fragmentations of a variety of cyclopropanes into the corresponding alkenes, expanding the boundaries of catalytic selective alkane activation. Computational studies suggest the involvement of the long-debated cycloproponium ions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环丙烷的催化不对称破碎。
烷烃的立体选择性活化是化学界长期面临的巨大挑战。虽然含金属的酶可以非常容易和选择性地氧化烷烃,但化学方法在很大程度上仅限于过渡金属催化碳氢官能化。烷烃可以质子化,形成五配位羰离子,并在强勃氏酸的作用下破碎成更小的碳氢化合物。然而,以前还没有人实现过对此类反应的催化立体控制。我们在此展示了强酸和封闭酸催化多种环丙烷高度对映选择性地破碎成相应的烯烃,从而拓展了催化选择性烷烃活化的范围。计算研究表明,长期以来争论不休的环丙烷离子也参与其中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Catalytic asymmetric fragmentation of cyclopropanes. Catalytic prenyl conjugate additions for synthesis of enantiomerically enriched PPAPs. Coming of age. Considerations for governing open foundation models. Dangers of aging water infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1