Roberta Scuoppo, Salvatore Castelbuono, Stefano Cannata, Giovanni Gentile, Valentina Agnese, Diego Bellavia, Caterina Gandolfo, Salvatore Pasta
{"title":"Generation of a virtual cohort of TAVI patients for in silico trials: a statistical shape and machine learning analysis.","authors":"Roberta Scuoppo, Salvatore Castelbuono, Stefano Cannata, Giovanni Gentile, Valentina Agnese, Diego Bellavia, Caterina Gandolfo, Salvatore Pasta","doi":"10.1007/s11517-024-03215-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In silico trials using computational modeling and simulations can complement clinical trials to improve the time-to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in developing in silico trials for assessing the safety and efficacy of cardiovascular devices, focusing on bioprostheses designed for transcatheter aortic valve implantation (TAVI).</p><p><strong>Methods: </strong>A statistical shape model (SSM) was employed to extract uncorrelated shape features from TAVI patients, enabling the augmentation of the original patient population into a clinically validated synthetic cohort. Machine learning techniques were utilized not only for risk stratification and classification but also for predicting the physiological variability within the original patient population.</p><p><strong>Results: </strong>By randomly varying the statistical shape modes within a range of ± 2σ, a hundred virtual patients were generated, forming the synthetic cohort. Validation against the original patient population was conducted using morphological measurements. Support vector machine regression, based on selected shape modes (principal component scores), effectively predicted the peak pressure gradient across the stenosis (R-squared of 0.551 and RMSE of 11.67 mmHg). Multilayer perceptron neural network accurately predicted the optimal device size for implantation with high sensitivity and specificity (AUC = 0.98).</p><p><strong>Conclusion: </strong>The study highlights the potential of integrating computational predictions, advanced machine learning techniques, and synthetic data generation to improve predictive accuracy and assess TAVI-related outcomes through in silico trials.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03215-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In silico trials using computational modeling and simulations can complement clinical trials to improve the time-to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in developing in silico trials for assessing the safety and efficacy of cardiovascular devices, focusing on bioprostheses designed for transcatheter aortic valve implantation (TAVI).
Methods: A statistical shape model (SSM) was employed to extract uncorrelated shape features from TAVI patients, enabling the augmentation of the original patient population into a clinically validated synthetic cohort. Machine learning techniques were utilized not only for risk stratification and classification but also for predicting the physiological variability within the original patient population.
Results: By randomly varying the statistical shape modes within a range of ± 2σ, a hundred virtual patients were generated, forming the synthetic cohort. Validation against the original patient population was conducted using morphological measurements. Support vector machine regression, based on selected shape modes (principal component scores), effectively predicted the peak pressure gradient across the stenosis (R-squared of 0.551 and RMSE of 11.67 mmHg). Multilayer perceptron neural network accurately predicted the optimal device size for implantation with high sensitivity and specificity (AUC = 0.98).
Conclusion: The study highlights the potential of integrating computational predictions, advanced machine learning techniques, and synthetic data generation to improve predictive accuracy and assess TAVI-related outcomes through in silico trials.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).