Utilizing non-invasive prenatal test sequencing data for human genetic investigation.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-10-09 DOI:10.1016/j.xgen.2024.100669
Siyang Liu, Yanhong Liu, Yuqin Gu, Xingchen Lin, Huanhuan Zhu, Hankui Liu, Zhe Xu, Shiyao Cheng, Xianmei Lan, Linxuan Li, Mingxi Huang, Hao Li, Rasmus Nielsen, Robert W Davies, Anders Albrechtsen, Guo-Bo Chen, Xiu Qiu, Xin Jin, Shujia Huang
{"title":"Utilizing non-invasive prenatal test sequencing data for human genetic investigation.","authors":"Siyang Liu, Yanhong Liu, Yuqin Gu, Xingchen Lin, Huanhuan Zhu, Hankui Liu, Zhe Xu, Shiyao Cheng, Xianmei Lan, Linxuan Li, Mingxi Huang, Hao Li, Rasmus Nielsen, Robert W Davies, Anders Albrechtsen, Guo-Bo Chen, Xiu Qiu, Xin Jin, Shujia Huang","doi":"10.1016/j.xgen.2024.100669","DOIUrl":null,"url":null,"abstract":"<p><p>Non-invasive prenatal testing (NIPT) employs ultra-low-pass sequencing of maternal plasma cell-free DNA to detect fetal trisomy. Its global adoption has established NIPT as a large human genetic resource for exploring genetic variations and their associations with phenotypes. Here, we present methods for analyzing large-scale, low-depth NIPT data, including customized algorithms and software for genetic variant detection, genotype imputation, family relatedness, population structure inference, and genome-wide association analysis of maternal genomes. Our results demonstrate accurate allele frequency estimation and high genotype imputation accuracy (R<sup>2</sup>>0.84) for NIPT sequencing depths from 0.1× to 0.3×. We also achieve effective classification of duplicates and first-degree relatives, along with robust principal-component analysis. Additionally, we obtain an R<sup>2</sup>>0.81 for estimating genetic effect sizes across genotyping and sequencing platforms with adequate sample sizes. These methods offer a robust theoretical and practical foundation for utilizing NIPT data in medical genetic research.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 10","pages":"100669"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive prenatal testing (NIPT) employs ultra-low-pass sequencing of maternal plasma cell-free DNA to detect fetal trisomy. Its global adoption has established NIPT as a large human genetic resource for exploring genetic variations and their associations with phenotypes. Here, we present methods for analyzing large-scale, low-depth NIPT data, including customized algorithms and software for genetic variant detection, genotype imputation, family relatedness, population structure inference, and genome-wide association analysis of maternal genomes. Our results demonstrate accurate allele frequency estimation and high genotype imputation accuracy (R2>0.84) for NIPT sequencing depths from 0.1× to 0.3×. We also achieve effective classification of duplicates and first-degree relatives, along with robust principal-component analysis. Additionally, we obtain an R2>0.81 for estimating genetic effect sizes across genotyping and sequencing platforms with adequate sample sizes. These methods offer a robust theoretical and practical foundation for utilizing NIPT data in medical genetic research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将无创产前检测测序数据用于人类基因调查。
无创产前检测(NIPT)通过对母体血浆无细胞 DNA 进行超低通量测序来检测胎儿三体综合征。无创产前检测在全球范围内的应用使其成为探索遗传变异及其与表型关系的大型人类遗传资源。在此,我们介绍了分析大规模、低深度 NIPT 数据的方法,包括用于遗传变异检测、基因型估算、家族亲缘关系、种群结构推断和母体基因组全基因组关联分析的定制算法和软件。我们的研究结果表明,在 NIPT 测序深度为 0.1× 至 0.3× 的情况下,等位基因频率估算准确,基因型估算准确率高(R2>0.84)。我们还实现了对重复和一级亲属的有效分类,并进行了稳健的主成分分析。此外,我们还获得了 R2>0.81 的结果,可以在样本量充足的情况下估计不同基因分型和测序平台的遗传效应大小。这些方法为在医学遗传研究中利用 NIPT 数据奠定了坚实的理论和实践基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
A combined deep learning framework for mammalian m6A site prediction. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1