Siyang Liu, Yanhong Liu, Yuqin Gu, Xingchen Lin, Huanhuan Zhu, Hankui Liu, Zhe Xu, Shiyao Cheng, Xianmei Lan, Linxuan Li, Mingxi Huang, Hao Li, Rasmus Nielsen, Robert W Davies, Anders Albrechtsen, Guo-Bo Chen, Xiu Qiu, Xin Jin, Shujia Huang
{"title":"Utilizing non-invasive prenatal test sequencing data for human genetic investigation.","authors":"Siyang Liu, Yanhong Liu, Yuqin Gu, Xingchen Lin, Huanhuan Zhu, Hankui Liu, Zhe Xu, Shiyao Cheng, Xianmei Lan, Linxuan Li, Mingxi Huang, Hao Li, Rasmus Nielsen, Robert W Davies, Anders Albrechtsen, Guo-Bo Chen, Xiu Qiu, Xin Jin, Shujia Huang","doi":"10.1016/j.xgen.2024.100669","DOIUrl":null,"url":null,"abstract":"<p><p>Non-invasive prenatal testing (NIPT) employs ultra-low-pass sequencing of maternal plasma cell-free DNA to detect fetal trisomy. Its global adoption has established NIPT as a large human genetic resource for exploring genetic variations and their associations with phenotypes. Here, we present methods for analyzing large-scale, low-depth NIPT data, including customized algorithms and software for genetic variant detection, genotype imputation, family relatedness, population structure inference, and genome-wide association analysis of maternal genomes. Our results demonstrate accurate allele frequency estimation and high genotype imputation accuracy (R<sup>2</sup>>0.84) for NIPT sequencing depths from 0.1× to 0.3×. We also achieve effective classification of duplicates and first-degree relatives, along with robust principal-component analysis. Additionally, we obtain an R<sup>2</sup>>0.81 for estimating genetic effect sizes across genotyping and sequencing platforms with adequate sample sizes. These methods offer a robust theoretical and practical foundation for utilizing NIPT data in medical genetic research.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 10","pages":"100669"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-invasive prenatal testing (NIPT) employs ultra-low-pass sequencing of maternal plasma cell-free DNA to detect fetal trisomy. Its global adoption has established NIPT as a large human genetic resource for exploring genetic variations and their associations with phenotypes. Here, we present methods for analyzing large-scale, low-depth NIPT data, including customized algorithms and software for genetic variant detection, genotype imputation, family relatedness, population structure inference, and genome-wide association analysis of maternal genomes. Our results demonstrate accurate allele frequency estimation and high genotype imputation accuracy (R2>0.84) for NIPT sequencing depths from 0.1× to 0.3×. We also achieve effective classification of duplicates and first-degree relatives, along with robust principal-component analysis. Additionally, we obtain an R2>0.81 for estimating genetic effect sizes across genotyping and sequencing platforms with adequate sample sizes. These methods offer a robust theoretical and practical foundation for utilizing NIPT data in medical genetic research.