FUSE: Improving the estimation and imputation of variant impacts in functional screening.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-10-09 DOI:10.1016/j.xgen.2024.100667
Tian Yu, James D Fife, Vineel Bhat, Ivan Adzhubey, Richard Sherwood, Christopher A Cassa
{"title":"FUSE: Improving the estimation and imputation of variant impacts in functional screening.","authors":"Tian Yu, James D Fife, Vineel Bhat, Ivan Adzhubey, Richard Sherwood, Christopher A Cassa","doi":"10.1016/j.xgen.2024.100667","DOIUrl":null,"url":null,"abstract":"<p><p>Deep mutational scanning enables high-throughput functional assessment of genetic variants. While phenotypic measurements from screening assays generally align with clinical outcomes, experimental noise may affect the accuracy of individual variant estimates. We developed the FUSE (functional substitution estimation) pipeline, which leverages measurements collectively within screening assays to improve the estimation of variant impacts. Drawing data from 115 published functional assays, FUSE assesses the mean functional effect per amino acid position and makes estimates for individual allelic variants. It enhances the correlation of variant functional effects from different assay platforms and increases the classification accuracy of missense variants in ClinVar across 29 genes (area under the receiver operating characteristic [ROC] curve [AUC] from 0.83 to 0.90). In UK Biobank patients with rare missense variants in BRCA1, LDLR, or TP53, FUSE improves the classification accuracy of associated phenotypes. FUSE can also impute variant effects for substitutions not experimentally screened. This approach improves accuracy and broadens the utility of data from functional screening.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 10","pages":"100667"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep mutational scanning enables high-throughput functional assessment of genetic variants. While phenotypic measurements from screening assays generally align with clinical outcomes, experimental noise may affect the accuracy of individual variant estimates. We developed the FUSE (functional substitution estimation) pipeline, which leverages measurements collectively within screening assays to improve the estimation of variant impacts. Drawing data from 115 published functional assays, FUSE assesses the mean functional effect per amino acid position and makes estimates for individual allelic variants. It enhances the correlation of variant functional effects from different assay platforms and increases the classification accuracy of missense variants in ClinVar across 29 genes (area under the receiver operating characteristic [ROC] curve [AUC] from 0.83 to 0.90). In UK Biobank patients with rare missense variants in BRCA1, LDLR, or TP53, FUSE improves the classification accuracy of associated phenotypes. FUSE can also impute variant effects for substitutions not experimentally screened. This approach improves accuracy and broadens the utility of data from functional screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FUSE:改进功能筛选中变异影响的估计和估算。
深度突变扫描可对基因变异进行高通量功能评估。虽然筛查测定的表型测量结果通常与临床结果一致,但实验噪音可能会影响单个变异估计的准确性。我们开发了 FUSE(功能替代估算)管道,利用筛查测定中的集体测量来改进对变异影响的估算。FUSE 从 115 项已发表的功能测定中提取数据,评估每个氨基酸位置的平均功能效应,并对单个等位基因变异进行估计。它增强了来自不同检测平台的变体功能效应的相关性,并提高了ClinVar中29个基因的错义变体分类准确性(接收器操作特征曲线[ROC]下面积[AUC]从0.83提高到0.90)。在 BRCA1、LDLR 或 TP53 中存在罕见错义变异的英国生物库患者中,FUSE 提高了相关表型的分类准确性。FUSE 还能对未经实验筛选的置换进行变异效应推算。这种方法提高了准确性,扩大了功能筛选数据的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
A combined deep learning framework for mammalian m6A site prediction. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1