OPTIMIZATION-DRIVEN STATISTICAL MODELS OF ANATOMIES USING RADIAL BASIS FUNCTION SHAPE REPRESENTATION.

Hong Xu, Shireen Y Elhabian
{"title":"OPTIMIZATION-DRIVEN STATISTICAL MODELS OF ANATOMIES USING RADIAL BASIS FUNCTION SHAPE REPRESENTATION.","authors":"Hong Xu, Shireen Y Elhabian","doi":"10.1109/ISBI56570.2024.10635852","DOIUrl":null,"url":null,"abstract":"<p><p>Particle-based shape modeling (PSM) is a popular approach to automatically quantify shape variability in populations of anatomies. The PSM family of methods employs optimization to automatically populate a dense set of corresponding particles (as pseudo landmarks) on 3D surfaces to allow subsequent shape analysis. A recent deep learning approach leverages implicit radial basis function representations of shapes to better adapt to the underlying complex geometry of anatomies. Here, we propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models by leveraging both an eigenshape and a correspondence loss. Furthermore, the proposed approach avoids using a black-box model and allows more freedom for particles to navigate the underlying surfaces, yielding more informative statistical models. We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI56570.2024.10635852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Particle-based shape modeling (PSM) is a popular approach to automatically quantify shape variability in populations of anatomies. The PSM family of methods employs optimization to automatically populate a dense set of corresponding particles (as pseudo landmarks) on 3D surfaces to allow subsequent shape analysis. A recent deep learning approach leverages implicit radial basis function representations of shapes to better adapt to the underlying complex geometry of anatomies. Here, we propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models by leveraging both an eigenshape and a correspondence loss. Furthermore, the proposed approach avoids using a black-box model and allows more freedom for particles to navigate the underlying surfaces, yielding more informative statistical models. We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用径向基函数形状表示法,建立以优化为驱动的解剖学统计模型。
基于粒子的形状建模(PSM)是一种流行的方法,用于自动量化解剖群体的形状变化。PSM 系列方法通过优化,在三维表面上自动填充一组密集的相应粒子(作为伪地标),以便进行后续形状分析。最近的一种深度学习方法利用形状的隐式径向基函数表征来更好地适应解剖学的基本复杂几何结构。在这里,我们提出了一种使用传统优化方法对该方法进行调整的方法,通过利用特征形状和对应损失,可以更精确地控制模型所需的特征。此外,我们提出的方法还避免了使用黑盒模型,允许粒子更自由地在底层表面导航,从而产生信息量更大的统计模型。我们在两个真实数据集上展示了所提方法与最先进方法的功效,并通过经验证明了我们对损失的选择是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blood Harmonisation of Endoscopic Transsphenoidal Surgical Video Frames on Phantom Models. DART: DEFORMABLE ANATOMY-AWARE REGISTRATION TOOLKIT FOR LUNG CT REGISTRATION WITH KEYPOINTS SUPERVISION. ROBUST QUANTIFICATION OF PERCENT EMPHYSEMA ON CT VIA DOMAIN ATTENTION: THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA) LUNG STUDY. SIFT-DBT: SELF-SUPERVISED INITIALIZATION AND FINE-TUNING FOR IMBALANCED DIGITAL BREAST TOMOSYNTHESIS IMAGE CLASSIFICATION. QUANTIFYING HIPPOCAMPAL SHAPE ASYMMETRY IN ALZHEIMER'S DISEASE USING OPTIMAL SHAPE CORRESPONDENCES.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1