Pub Date : 2024-05-27DOI: 10.1109/ISBI56570.2024.10635809
Mahrukh Saeed, Julien Quarez, Hassna Irzan, Bava Kesavan, Matthew Elliot, Oscar Maccormac, James Knight, Sebastien Ourselin, Jonathan Shapey, Alejandro Granados
Physical phantom models have been integral to surgical training, yet they lack realism and are unable to replicate the presence of blood resulting from surgical actions. Existing domain transfer methods aim to enhance realism, but none facilitate blood simulation. This study investigates the overlay of blood on images acquired during endoscopic transsphenoidal pituitary surgery on phantom models. The process involves employing manual techniques using the GIMP image manipulation application and automated methods using pythons Blend Modes module. We then approach this as an image harmonisation task to assess its practicality and feasibility. Our evaluation uses Structural Similarity Index Measure and Laplacian metrics. The results we obtained emphasize the significance of image harmonisation, offering substantial insights within the surgical field. Our work is a step towards investigating data-driven models that can simulate blood for increased realism during surgical training on phantom models.
{"title":"Blood Harmonisation of Endoscopic Transsphenoidal Surgical Video Frames on Phantom Models.","authors":"Mahrukh Saeed, Julien Quarez, Hassna Irzan, Bava Kesavan, Matthew Elliot, Oscar Maccormac, James Knight, Sebastien Ourselin, Jonathan Shapey, Alejandro Granados","doi":"10.1109/ISBI56570.2024.10635809","DOIUrl":"10.1109/ISBI56570.2024.10635809","url":null,"abstract":"<p><p>Physical phantom models have been integral to surgical training, yet they lack realism and are unable to replicate the presence of blood resulting from surgical actions. Existing domain transfer methods aim to enhance realism, but none facilitate blood simulation. This study investigates the overlay of blood on images acquired during endoscopic transsphenoidal pituitary surgery on phantom models. The process involves employing manual techniques using the GIMP image manipulation application and automated methods using pythons Blend Modes module. We then approach this as an image harmonisation task to assess its practicality and feasibility. Our evaluation uses Structural Similarity Index Measure and Laplacian metrics. The results we obtained emphasize the significance of image harmonisation, offering substantial insights within the surgical field. Our work is a step towards investigating data-driven models that can simulate blood for increased realism during surgical training on phantom models.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":" ","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-08-22DOI: 10.1109/ISBI56570.2024.10635852
Hong Xu, Shireen Y Elhabian
Particle-based shape modeling (PSM) is a popular approach to automatically quantify shape variability in populations of anatomies. The PSM family of methods employs optimization to automatically populate a dense set of corresponding particles (as pseudo landmarks) on 3D surfaces to allow subsequent shape analysis. A recent deep learning approach leverages implicit radial basis function representations of shapes to better adapt to the underlying complex geometry of anatomies. Here, we propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models by leveraging both an eigenshape and a correspondence loss. Furthermore, the proposed approach avoids using a black-box model and allows more freedom for particles to navigate the underlying surfaces, yielding more informative statistical models. We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.
{"title":"OPTIMIZATION-DRIVEN STATISTICAL MODELS OF ANATOMIES USING RADIAL BASIS FUNCTION SHAPE REPRESENTATION.","authors":"Hong Xu, Shireen Y Elhabian","doi":"10.1109/ISBI56570.2024.10635852","DOIUrl":"10.1109/ISBI56570.2024.10635852","url":null,"abstract":"<p><p>Particle-based shape modeling (PSM) is a popular approach to automatically quantify shape variability in populations of anatomies. The PSM family of methods employs optimization to automatically populate a dense set of corresponding particles (as pseudo landmarks) on 3D surfaces to allow subsequent shape analysis. A recent deep learning approach leverages implicit radial basis function representations of shapes to better adapt to the underlying complex geometry of anatomies. Here, we propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models by leveraging both an eigenshape and a correspondence loss. Furthermore, the proposed approach avoids using a black-box model and allows more freedom for particles to navigate the underlying surfaces, yielding more informative statistical models. We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-08-22DOI: 10.1109/isbi56570.2024.10635176
Dong Liu, Zhuoyao Xin, Robin Ji, Fotis Tsitsos, Sergio Jiménez-Gambín, Elisa E Konofagou, Vincent P Ferrera, Jia Guo
Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy. The acoustic simulation with sCT images showed mean focus absolute pressure differences of 8.85±7.29 % for the anterior cingulate cortex, 11.81±8.63 % for the precuneus, and 7.27±3.64 % for the supplemental motor cortex, with focus position discrepancies within 0.9±0.5 mm. These results underscore the efficacy of UTE-MRI as a non-radiative, cost-effective alternative for tFUS planning, with significant potential for clinical application.
{"title":"ENHANCING TRANSCRANIAL FOCUSED ULTRASOUND TREATMENT PLANNING WITH SYNTHETIC CT FROM ULTRA-SHORT ECHO TIME (UTE) MRI: A MULTI-TASK DEEP LEARNING APPROACH.","authors":"Dong Liu, Zhuoyao Xin, Robin Ji, Fotis Tsitsos, Sergio Jiménez-Gambín, Elisa E Konofagou, Vincent P Ferrera, Jia Guo","doi":"10.1109/isbi56570.2024.10635176","DOIUrl":"10.1109/isbi56570.2024.10635176","url":null,"abstract":"<p><p>Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy. The acoustic simulation with sCT images showed mean focus absolute pressure differences of 8.85±7.29 % for the anterior cingulate cortex, 11.81±8.63 % for the precuneus, and 7.27±3.64 % for the supplemental motor cortex, with focus position discrepancies within 0.9±0.5 mm. These results underscore the efficacy of UTE-MRI as a non-radiative, cost-effective alternative for tFUS planning, with significant potential for clinical application.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-08-22DOI: 10.1109/isbi56570.2024.10635410
Jiarui Xing, Nian Wu, Kenneth C Bilchick, Frederick H Epstein, Miaomiao Zhang
This paper presents a multimodal deep learning framework that utilizes advanced image techniques to improve the performance of clinical analysis heavily dependent on routinely acquired standard images. More specifically, we develop a joint learning network that for the first time leverages the accuracy and reproducibility of myocardial strains obtained from Displacement Encoding with Stimulated Echo (DENSE) to guide the analysis of cine cardiac magnetic resonance (CMR) imaging in late mechanical activation (LMA) detection. An image registration network is utilized to acquire the knowledge of cardiac motions, an important feature estimator of strain values, from standard cine CMRs. Our framework consists of two major components: (i) a DENSE-supervised strain network leveraging latent motion features learned from a registration network to predict myocardial strains; and (ii) a LMA network taking advantage of the predicted strain for effective LMA detection. Experimental results show that our proposed work substantially improves the performance of strain analysis and LMA detection from cine CMR images, aligning more closely with the achievements of DENSE.
本文介绍了一种多模态深度学习框架,该框架利用先进的图像技术来提高严重依赖常规获取的标准图像的临床分析性能。更具体地说,我们开发了一种联合学习网络,该网络首次利用了通过刺激回波位移编码(DENSE)获得的心肌应变的准确性和可重复性,以指导晚期机械激活(LMA)检测中的电影心脏磁共振(CMR)成像分析。我们利用图像配准网络从标准的 cine cardiac CMR 中获取心脏运动知识,这是应变值的一个重要特征估计值。我们的框架由两个主要部分组成:(i) DENSE 监督应变网络,利用从配准网络中学到的潜在运动特征来预测心肌应变;以及 (ii) LMA 网络,利用预测的应变进行有效的 LMA 检测。实验结果表明,我们提出的工作大大提高了从 cine CMR 图像中进行应变分析和 LMA 检测的性能,与 DENSE 的成就更加一致。
{"title":"MULTIMODAL LEARNING TO IMPROVE CARDIAC LATE MECHANICAL ACTIVATION DETECTION FROM CINE MR IMAGES.","authors":"Jiarui Xing, Nian Wu, Kenneth C Bilchick, Frederick H Epstein, Miaomiao Zhang","doi":"10.1109/isbi56570.2024.10635410","DOIUrl":"10.1109/isbi56570.2024.10635410","url":null,"abstract":"<p><p>This paper presents a multimodal deep learning framework that utilizes advanced image techniques to improve the performance of clinical analysis heavily dependent on routinely acquired standard images. More specifically, we develop a joint learning network that for the first time leverages the accuracy and reproducibility of myocardial strains obtained from Displacement Encoding with Stimulated Echo (DENSE) to guide the analysis of cine cardiac magnetic resonance (CMR) imaging in late mechanical activation (LMA) detection. An image registration network is utilized to acquire the knowledge of cardiac motions, an important feature estimator of strain values, from standard cine CMRs. Our framework consists of two major components: (i) a DENSE-supervised strain network leveraging latent motion features learned from a registration network to predict myocardial strains; and (ii) a LMA network taking advantage of the predicted strain for effective LMA detection. Experimental results show that our proposed work substantially improves the performance of strain analysis and LMA detection from cine CMR images, aligning more closely with the achievements of DENSE.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-08-22DOI: 10.1109/isbi56570.2024.10635556
Negar Jalili-Mallak, Yanshuai Tu, Zhong-Lin Lu, Yalin Wang
Retinotopic mapping aims to uncover the relationship between visual stimuli on the retina and neural responses on the visual cortical surface. This study advances retinotopic mapping by applying diffeomorphic registration to the 3T NYU retinotopy dataset, encompassing analyze-PRF and mrVista data. Diffeomorphic Registration for Retinotopic Maps (DRRM) quantifies the diffeomorphic condition, ensuring accurate alignment of retinotopic maps without topological violations. Leveraging the Beltrami coefficient and topological condition, DRRM significantly enhances retinotopic map accuracy. Evaluation against existing methods demonstrates DRRM's superiority on various datasets, including 3T and 7T retinotopy data. The application of diffeomorphic registration improves the interpretability of low-quality retinotopic maps, holding promise for clinical applications.
{"title":"ENHANCING 3T RETINOTOPIC MAPS USING DIFFEOMORPHIC REGISTRATION.","authors":"Negar Jalili-Mallak, Yanshuai Tu, Zhong-Lin Lu, Yalin Wang","doi":"10.1109/isbi56570.2024.10635556","DOIUrl":"10.1109/isbi56570.2024.10635556","url":null,"abstract":"<p><p>Retinotopic mapping aims to uncover the relationship between visual stimuli on the retina and neural responses on the visual cortical surface. This study advances retinotopic mapping by applying diffeomorphic registration to the 3T NYU retinotopy dataset, encompassing analyze-PRF and mrVista data. Diffeomorphic Registration for Retinotopic Maps (DRRM) quantifies the diffeomorphic condition, ensuring accurate alignment of retinotopic maps without topological violations. Leveraging the Beltrami coefficient and topological condition, DRRM significantly enhances retinotopic map accuracy. Evaluation against existing methods demonstrates DRRM's superiority on various datasets, including 3T and 7T retinotopy data. The application of diffeomorphic registration improves the interpretability of low-quality retinotopic maps, holding promise for clinical applications.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-08-22DOI: 10.1109/isbi56570.2024.10635551
Hongyi Gu, Chi Zhang, Zidan Yu, Christoph Rettenmeier, V Andrew Stenger, Mehmet Akçakaya
Functional MRI (fMRI) is an important tool for non-invasive studies of brain function. Over the past decade, multi-echo fMRI methods that sample multiple echo times has become popular with potential to improve quantification. While these acquisitions are typically performed with Cartesian trajectories, non-Cartesian trajectories, in particular spiral acquisitions, hold promise for denser sampling of echo times. However, such acquisitions require very high acceleration rates for sufficient spatiotemporal resolutions. In this work, we propose to use a physics-driven deep learning (PD-DL) reconstruction to accelerate multi-echo spiral fMRI by 10-fold. We modify a self-supervised learning algorithm for optimized training with non-Cartesian trajectories and use it to train the PD-DL network. Results show that the proposed self-supervised PD-DL reconstruction achieves high spatio-temporal resolution with meaningful BOLD analysis.
{"title":"NON-CARTESIAN SELF-SUPERVISED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION FOR HIGHLY-ACCELERATED MULTI-ECHO SPIRAL FMRI.","authors":"Hongyi Gu, Chi Zhang, Zidan Yu, Christoph Rettenmeier, V Andrew Stenger, Mehmet Akçakaya","doi":"10.1109/isbi56570.2024.10635551","DOIUrl":"10.1109/isbi56570.2024.10635551","url":null,"abstract":"<p><p>Functional MRI (fMRI) is an important tool for non-invasive studies of brain function. Over the past decade, multi-echo fMRI methods that sample multiple echo times has become popular with potential to improve quantification. While these acquisitions are typically performed with Cartesian trajectories, non-Cartesian trajectories, in particular spiral acquisitions, hold promise for denser sampling of echo times. However, such acquisitions require very high acceleration rates for sufficient spatiotemporal resolutions. In this work, we propose to use a physics-driven deep learning (PD-DL) reconstruction to accelerate multi-echo spiral fMRI by 10-fold. We modify a self-supervised learning algorithm for optimized training with non-Cartesian trajectories and use it to train the PD-DL network. Results show that the proposed self-supervised PD-DL reconstruction achieves high spatio-temporal resolution with meaningful BOLD analysis.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mild cognitive impairment (MCI) is recognized as a precursor to Alzheimer's disease (AD), a progressive and irreversible neurodegenerative disorder of the brain. The neurodegeneration of brain connectivity networks plays a pivotal role in the development and progression of MCI. Traditionally, brain networks are generated using coarse-grained brain regions, where the regions serve as nodes and their functional or structural connections are used as edges. Recently, a novel finer scale brain folding patterns named 3-hinge gyrus (3HG) was identified, which is defined as the conjunctions coming from three directions on gyral crests. 3HGs have been shown playing an important role in brain network and can serve as hubs. In this study, our objective is to construct a novel 3HG-based finer-scale brain connectome and comprehensively compare its performance with traditional region-based connectome in predicting MCI against Normal Controls (NC). The results of extensive experiments demonstrate the superior performance of 3HG-based brain connectome, shedding light on the potential of 3HG-based connectomes in capturing intricate neurodegenerative patterns associated with MCI and AD.
{"title":"MILD COGNITIVE IMPAIRMENT CLASSIFICATION USING A NOVEL FINER-SCALE BRAIN CONNECTOME.","authors":"Yanjun Lyu, Lu Zhang, Xiaowei Yu, Chao Cao, Tianming Liu, Dajiang Zhu","doi":"10.1109/isbi56570.2024.10635558","DOIUrl":"https://doi.org/10.1109/isbi56570.2024.10635558","url":null,"abstract":"<p><p>Mild cognitive impairment (MCI) is recognized as a precursor to Alzheimer's disease (AD), a progressive and irreversible neurodegenerative disorder of the brain. The neurodegeneration of brain connectivity networks plays a pivotal role in the development and progression of MCI. Traditionally, brain networks are generated using coarse-grained brain regions, where the regions serve as nodes and their functional or structural connections are used as edges. Recently, a novel finer scale brain folding patterns named 3-hinge gyrus (3HG) was identified, which is defined as the conjunctions coming from three directions on gyral crests. 3HGs have been shown playing an important role in brain network and can serve as hubs. In this study, our objective is to construct a novel 3HG-based finer-scale brain connectome and comprehensively compare its performance with traditional region-based connectome in predicting MCI against Normal Controls (NC). The results of extensive experiments demonstrate the superior performance of 3HG-based brain connectome, shedding light on the potential of 3HG-based connectomes in capturing intricate neurodegenerative patterns associated with MCI and AD.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, a novel cortical folding pattern known as the 3-hinge gyrus (3HG) has been identified. 3HGs are defined as the convergence of the gyri coming from three distinct directions on gyral crests. In contrast to cortical regions, 3HGs are defined at a finer scale and they widely exist across different individuals, representing both commonalities and individualities of cortical folding patterns. It is important to note that 3HGs are identified in individual spaces, lacking natural cross-subject correspondences. To address this issue, we have developed a learning-based method to encode anatomical features of 3HGs into a set of embedding vectors that can be compared across individuals. However, this method solely relies on anatomical features and can be suboptimal because it does not consider the related structural connectivity patterns, as many 3HGs have multiple potential matches using anatomical properties only. In this study, we leverage the multimodal imaging data (T1 MRI and DTI) which are complementary to each other in representing 3HGs, to enhance the precision when identifying one-to-one correspondence for 3HGs. Through extensive experiments, we have demonstrated the effectiveness of our approach in mitigating the one-to-many match issue associated with 3HGs, significantly improving the accuracy of 3HG correspondences. This accomplishment holds considerable implications for group-level analyses based on 3HGs and contributes to the broader utilization of 3HGs in brain studies.
{"title":"ENHANCING GROUP-WISE CONSISTENCY IN 3-HINGE GYRUS MATCHING VIA ANATOMICAL EMBEDDING AND STRUCTURAL CONNECTIVITY OPTIMIZATION.","authors":"Chao Cao, Xiaowei Yu, Lu Zhang, Tong Chen, Yanjun Lyu, Tianming Liu, Dajiang Zhu","doi":"10.1109/isbi56570.2024.10635893","DOIUrl":"https://doi.org/10.1109/isbi56570.2024.10635893","url":null,"abstract":"<p><p>Recently, a novel cortical folding pattern known as the 3-hinge gyrus (3HG) has been identified. 3HGs are defined as the convergence of the gyri coming from three distinct directions on gyral crests. In contrast to cortical regions, 3HGs are defined at a finer scale and they widely exist across different individuals, representing both commonalities and individualities of cortical folding patterns. It is important to note that 3HGs are identified in individual spaces, lacking natural cross-subject correspondences. To address this issue, we have developed a learning-based method to encode anatomical features of 3HGs into a set of embedding vectors that can be compared across individuals. However, this method solely relies on anatomical features and can be suboptimal because it does not consider the related structural connectivity patterns, as many 3HGs have multiple potential matches using anatomical properties only. In this study, we leverage the multimodal imaging data (T1 MRI and DTI) which are complementary to each other in representing 3HGs, to enhance the precision when identifying one-to-one correspondence for 3HGs. Through extensive experiments, we have demonstrated the effectiveness of our approach in mitigating the one-to-many match issue associated with 3HGs, significantly improving the accuracy of 3HG correspondences. This accomplishment holds considerable implications for group-level analyses based on 3HGs and contributes to the broader utilization of 3HGs in brain studies.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-08-22DOI: 10.1109/isbi56570.2024.10635697
Shen Zhu, Ifrah Zawar, Jaideep Kapur, P Thomas Fletcher
Hippocampal atrophy in Alzheimer's disease (AD) is asymmetric and spatially inhomogeneous. While extensive work has been done on volume and shape analysis of atrophy of the hippocampus in AD, less attention has been given to hippocampal asymmetry specifically. Previous studies of hippocampal asymmetry are limited to global volume or shape measures, which don't localize shape asymmetry at the point level. In this paper, we propose to quantify localized shape asymmetry by optimizing point correspondences between left and right hippocampi within a subject, while simultaneously favoring a compact statistical shape model of the entire sample. To account for related variables that have an impact on AD and healthy subject differences, we build linear models with other confounding factors. Our results on the OASIS3 dataset demonstrate that compared to volumetric information, shape asymmetry reveals fine-grained, localized differences that inform us about the hippocampal regions of most significant shape asymmetry in AD patients.
阿尔茨海默病(AD)的海马体萎缩是不对称和空间不均匀的。虽然对阿尔茨海默病海马体萎缩的体积和形状分析已经做了大量工作,但对海马体不对称性的具体研究关注较少。以往对海马体不对称性的研究仅限于整体体积或形状测量,无法在点水平上定位形状不对称性。在本文中,我们建议通过优化受试者左右海马之间的点对应关系来量化局部形状不对称性,同时偏向于整个样本的紧凑统计形状模型。为了考虑对注意力缺失症和健康受试者差异有影响的相关变量,我们建立了包含其他混杂因素的线性模型。我们对 OASIS3 数据集的研究结果表明,与体积信息相比,形状不对称性揭示了细粒度的局部差异,让我们了解到在 AD 患者中形状不对称性最显著的海马区。
{"title":"QUANTIFYING HIPPOCAMPAL SHAPE ASYMMETRY IN ALZHEIMER'S DISEASE USING OPTIMAL SHAPE CORRESPONDENCES.","authors":"Shen Zhu, Ifrah Zawar, Jaideep Kapur, P Thomas Fletcher","doi":"10.1109/isbi56570.2024.10635697","DOIUrl":"10.1109/isbi56570.2024.10635697","url":null,"abstract":"<p><p>Hippocampal atrophy in Alzheimer's disease (AD) is asymmetric and spatially inhomogeneous. While extensive work has been done on volume and shape analysis of atrophy of the hippocampus in AD, less attention has been given to hippocampal asymmetry specifically. Previous studies of hippocampal asymmetry are limited to global volume or shape measures, which don't localize shape asymmetry at the point level. In this paper, we propose to quantify localized shape asymmetry by optimizing point correspondences between left and right hippocampi within a subject, while simultaneously favoring a compact statistical shape model of the entire sample. To account for related variables that have an impact on AD and healthy subject differences, we build linear models with other confounding factors. Our results on the OASIS3 dataset demonstrate that compared to volumetric information, shape asymmetry reveals fine-grained, localized differences that inform us about the hippocampal regions of most significant shape asymmetry in AD patients.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-08-22DOI: 10.1109/isbi56570.2024.10635372
Duy Duong-Tran, Mark Magsino, Joaquín Goñi, Li Shen
The complex etiology of various neurodegenerative diseases and psychiatric disorders, especially at the individual level, has posed unmatched challenges to the advancement of personalized medicine. Recent technical advancements in functional magnetic resonance imaging has enabled researchers to map brain large-scale connectivity at an unprecedented level of subject precision. Nonetheless, along with the early dawn of promises in personalized medicine using various neuroimaging modalities rose the challenge of clinical utility of brain connectomics (e.g., functional connectomes). Besides many established challenges of functional connectome utility such as edge reliability, there exists an easily overlooked challenge that does not get the same level of attention: computationality of functional connectome. To improve clinical utility of functional connectomics, we propose a random projection method that would preserve a practically similar level of subject identifiability while sampling and retaining only a proportion of functional edges in subjects' functional connectome. Our work pave a way towards computational improvements, hence clinical utility, of functional connectomes while not compromising the integrity of biomarkers learnt from whole-brain large-scale functional connectivity imaging modality.
{"title":"PRESERVING HUMAN LARGE-SCALE BRAIN CONNECTIVITY FINGERPRINT IDENTIFIABILITY WITH RANDOM PROJECTIONS.","authors":"Duy Duong-Tran, Mark Magsino, Joaquín Goñi, Li Shen","doi":"10.1109/isbi56570.2024.10635372","DOIUrl":"10.1109/isbi56570.2024.10635372","url":null,"abstract":"<p><p>The complex etiology of various neurodegenerative diseases and psychiatric disorders, especially at the individual level, has posed unmatched challenges to the advancement of personalized medicine. Recent technical advancements in functional magnetic resonance imaging has enabled researchers to map brain large-scale connectivity at an unprecedented level of subject precision. Nonetheless, along with the early dawn of promises in personalized medicine using various neuroimaging modalities rose the challenge of clinical utility of brain connectomics (e.g., functional connectomes). Besides many established challenges of functional connectome utility such as edge reliability, there exists an easily overlooked challenge that does not get the same level of attention: computationality of functional connectome. To improve clinical utility of functional connectomics, we propose a random projection method that would preserve a practically similar level of subject identifiability while sampling and retaining only a proportion of functional edges in subjects' functional connectome. Our work pave a way towards computational improvements, hence clinical utility, of functional connectomes while not compromising the integrity of biomarkers learnt from whole-brain large-scale functional connectivity imaging modality.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}