CQformer: Learning Dynamics Across Slices in Medical Image Segmentation.

Shengjie Zhang, Xin Shen, Xiang Chen, Ziqi Yu, Bohan Ren, Haibo Yang, Xiao-Yong Zhang, Yuan Zhou
{"title":"CQformer: Learning Dynamics Across Slices in Medical Image Segmentation.","authors":"Shengjie Zhang, Xin Shen, Xiang Chen, Ziqi Yu, Bohan Ren, Haibo Yang, Xiao-Yong Zhang, Yuan Zhou","doi":"10.1109/TMI.2024.3477555","DOIUrl":null,"url":null,"abstract":"<p><p>Prevalent studies on deep learning-based 3D medical image segmentation capture the continuous variation across 2D slices mainly via convolution, Transformer, inter-slice interaction, and time series models. In this work, via modeling this variation by an ordinary differential equation (ODE), we propose a cross instance query-guided Transformer architecture (CQformer) that leverages features from preceding slices to improve the segmentation performance of subsequent slices. Its key components include a cross-attention mechanism in an ODE formulation, which bridges the features of contiguous 2D slices of the 3D volumetric data. In addition, a regression head is employed to shorten the gap between the bottleneck and the prediction layer. Extensive experiments on 7 datasets with various modalities (CT, MRI) and tasks (organ, tissue, and lesion) demonstrate that CQformer outperforms previous state-of-the-art segmentation algorithms on 6 datasets by 0.44%-2.45%, and achieves the second highest performance of 88.30% on the BTCV dataset. The code will be publicly available after acceptance.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3477555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prevalent studies on deep learning-based 3D medical image segmentation capture the continuous variation across 2D slices mainly via convolution, Transformer, inter-slice interaction, and time series models. In this work, via modeling this variation by an ordinary differential equation (ODE), we propose a cross instance query-guided Transformer architecture (CQformer) that leverages features from preceding slices to improve the segmentation performance of subsequent slices. Its key components include a cross-attention mechanism in an ODE formulation, which bridges the features of contiguous 2D slices of the 3D volumetric data. In addition, a regression head is employed to shorten the gap between the bottleneck and the prediction layer. Extensive experiments on 7 datasets with various modalities (CT, MRI) and tasks (organ, tissue, and lesion) demonstrate that CQformer outperforms previous state-of-the-art segmentation algorithms on 6 datasets by 0.44%-2.45%, and achieves the second highest performance of 88.30% on the BTCV dataset. The code will be publicly available after acceptance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CQformer:医学图像分割中的跨切片动态学习
基于深度学习的三维医学图像分割研究主要通过卷积、变换器、切片间交互和时间序列模型来捕捉二维切片间的连续变化。在这项工作中,通过用常微分方程(ODE)对这种变化进行建模,我们提出了一种跨实例查询引导的变换器架构(CQformer),它能利用前面切片的特征来提高后续切片的分割性能。其关键组件包括 ODE 公式中的交叉注意机制,该机制将三维容积数据中连续二维切片的特征连接起来。此外,还采用了回归头来缩短瓶颈层和预测层之间的差距。在不同模式(CT、MRI)和任务(器官、组织和病变)的 7 个数据集上进行的广泛实验表明,CQformer 在 6 个数据集上的表现比以前的一流分割算法高出 0.44%-2.45% ,在 BTCV 数据集上的表现为 88.30%,位居第二。代码将在通过验收后公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1