Effective Electromagnetic Properties of Composite Material Computed From Neural Network Approach

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Numerical Modelling-Electronic Networks Devices and Fields Pub Date : 2024-10-09 DOI:10.1002/jnm.3303
Abelin Kameni, Den Palessonga, Zahraa Semmoumy, Mohamed Bensetti
{"title":"Effective Electromagnetic Properties of Composite Material Computed From Neural Network Approach","authors":"Abelin Kameni,&nbsp;Den Palessonga,&nbsp;Zahraa Semmoumy,&nbsp;Mohamed Bensetti","doi":"10.1002/jnm.3303","DOIUrl":null,"url":null,"abstract":"<p>Thanks to their lightweight, composite materials have become widely used in the automotive and aerospace industries. The design of components made from these materials is carried out by numerical modeling which can sometimes be tedious because of the need to take into account the internal structure of these materials. Obtaining the effective properties of an equivalent homogeneous material to replace the composite in our numerical models makes modeling easier. Classical homogenization approaches are not always suitable to obtain these effective properties. This article deals with an inverse problem that consists in computing the electromagnetic properties from the knowledge of the magnetic shielding effectiveness values. For different composite samples, an artificial neural network method is used to predict the effective conductivities from the magnetic shielding effectiveness measurements. The magnetic shielding effectiveness values computed from the predicted conductivities are close to those obtained from the measurements.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnm.3303","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3303","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Thanks to their lightweight, composite materials have become widely used in the automotive and aerospace industries. The design of components made from these materials is carried out by numerical modeling which can sometimes be tedious because of the need to take into account the internal structure of these materials. Obtaining the effective properties of an equivalent homogeneous material to replace the composite in our numerical models makes modeling easier. Classical homogenization approaches are not always suitable to obtain these effective properties. This article deals with an inverse problem that consists in computing the electromagnetic properties from the knowledge of the magnetic shielding effectiveness values. For different composite samples, an artificial neural network method is used to predict the effective conductivities from the magnetic shielding effectiveness measurements. The magnetic shielding effectiveness values computed from the predicted conductivities are close to those obtained from the measurements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用神经网络方法计算复合材料的有效电磁特性
由于重量轻,复合材料已广泛应用于汽车和航空航天工业。由于需要考虑这些材料的内部结构,用这些材料制成的部件的设计工作有时需要通过数值建模来完成,因此建模工作十分繁琐。获取等效均质材料的有效特性来替代我们数值模型中的复合材料,会使建模变得更加容易。经典的均质化方法并不总是适合获得这些有效特性。本文讨论的是一个逆问题,即根据磁屏蔽效能值计算电磁特性。对于不同的复合材料样品,采用人工神经网络方法从磁屏蔽效能测量值预测有效电导率。根据预测电导率计算出的磁屏蔽效能值与测量值相近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
期刊最新文献
Subthreshold Drain Current Model of Cylindrical Gate All-Around Junctionless Transistor With Three Different Gate Materials Hybrid TLM-CTLM Test Structure for Determining Specific Contact Resistivity of Ohmic Contacts Optimal Design of Smart Antenna Arrays for Beamforming, Direction Finding, and Null Placement Using the Soft Computing Method A Nonlinear Model of RF Switch Device Based on Common Gate GaAs FETs Analysis of etched drain based Cylindrical agate-all-around tunnel field effect transistor based static random access memory cell design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1