{"title":"Efficient organic emitters enabled by ultrastrong through-space conjugation","authors":"Qingyang Xu, Jianyu Zhang, Jing Zhi Sun, Haoke Zhang, Ben Zhong Tang","doi":"10.1038/s41566-024-01527-7","DOIUrl":null,"url":null,"abstract":"Manipulating the electronic structure of organic functional materials by through-space conjugation (TSC) to achieve desirable photophysical properties has been a long-standing research focus. Although the working mechanisms of TSC have been demonstrated, the roles that the intrinsic molecular skeleton and extrinsic aggregates play remain unclear. Here four trinaphthylmethanol isomers and four trinaphthylmethane (TNM) isomers with varying connecting sites of naphthalene were synthesized, and their photophysical properties were systematically investigated. The strength of TSC was found to rise from 222-TNM to 111-TNM with the increased number of 1-naphthalene units. In particular, 111-TNM was found to support efficient long-wavelength clusteroluminescence with an absolute quantum yield of 55%. Experimental and theoretical results revealed that the inherent attribute of robust intramolecular interactions within individual molecules is fundamental for ultrastrong TSC, and intermolecular interactions play an auxiliary role in fortifying and stabilizing intramolecular interactions. This work reveals the intrinsic and extrinsic factors for manipulating TSC and provides a reliable strategy for constructing non-conjugated luminogens with efficient clusteroluminescence. Efficient organic emitters of ultraviolet light are realized by the use of isomers that exhibit strong through-space conjugation.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1185-1194"},"PeriodicalIF":32.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01527-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Manipulating the electronic structure of organic functional materials by through-space conjugation (TSC) to achieve desirable photophysical properties has been a long-standing research focus. Although the working mechanisms of TSC have been demonstrated, the roles that the intrinsic molecular skeleton and extrinsic aggregates play remain unclear. Here four trinaphthylmethanol isomers and four trinaphthylmethane (TNM) isomers with varying connecting sites of naphthalene were synthesized, and their photophysical properties were systematically investigated. The strength of TSC was found to rise from 222-TNM to 111-TNM with the increased number of 1-naphthalene units. In particular, 111-TNM was found to support efficient long-wavelength clusteroluminescence with an absolute quantum yield of 55%. Experimental and theoretical results revealed that the inherent attribute of robust intramolecular interactions within individual molecules is fundamental for ultrastrong TSC, and intermolecular interactions play an auxiliary role in fortifying and stabilizing intramolecular interactions. This work reveals the intrinsic and extrinsic factors for manipulating TSC and provides a reliable strategy for constructing non-conjugated luminogens with efficient clusteroluminescence. Efficient organic emitters of ultraviolet light are realized by the use of isomers that exhibit strong through-space conjugation.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.