MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-11 DOI:10.1038/s41467-024-53114-7
Ruohan Wang, Yumin Zheng, Zijian Zhang, Kailu Song, Erxi Wu, Xiaopeng Zhu, Tao P. Wu, Jun Ding
{"title":"MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell","authors":"Ruohan Wang, Yumin Zheng, Zijian Zhang, Kailu Song, Erxi Wu, Xiaopeng Zhu, Tao P. Wu, Jun Ding","doi":"10.1038/s41467-024-53114-7","DOIUrl":null,"url":null,"abstract":"<p>Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align multi-mapping reads to either ‘best-mapped’ or ‘random-mapped’ locations and categorize them at the subfamily levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development facilitates the exploration of single-cell heterogeneity and gene regulation through the lens of TEs, offering an effective transposon quantification tool for the single-cell genomics community.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"108 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53114-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align multi-mapping reads to either ‘best-mapped’ or ‘random-mapped’ locations and categorize them at the subfamily levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development facilitates the exploration of single-cell heterogeneity and gene regulation through the lens of TEs, offering an effective transposon quantification tool for the single-cell genomics community.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MATES:基于深度学习的单细胞转座元件特异性定量模型
可转座元件(TE)对遗传多样性和基因调控至关重要。目前的单细胞定量方法通常是将多映射读数与 "最佳映射 "或 "随机映射 "位置进行比对,并在亚族水平上对其进行分类,从而忽略了准确、特定位点 TE 定量的生物学必要性。此外,现有的这些方法主要是针对转录组学数据设计的,因此限制了它们对其他模式单细胞数据的适应性。为了应对这些挑战,我们在这里介绍一种深度学习方法 MATES,它能利用 TE 位点侧边相邻读数排列的上下文,将多映射读数精确分配到 TE 的特定位点。与现有方法相比,MATES 在应用于各种单细胞组数据集时表现出更高的性能,提高了 TE 量化的准确性,并有助于识别已确定细胞群的标记 TE。这项开发有助于从TE的角度探索单细胞异质性和基因调控,为单细胞基因组学界提供了一种有效的转座子量化工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
VLDLR mediates Semliki Forest virus neuroinvasion through the blood-cerebrospinal fluid barrier Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation Chromosome architecture and low cohesion bias acrocentric chromosomes towards aneuploidy during mammalian meiosis Broadscale dampening of uncertainty adjustment in the aging brain An efficient multi-gram access in a two-step synthesis to soluble, nine-atomic, silylated silicon clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1