Revealing interfacial degradation of Bi2Te3-based micro thermoelectric device under current shocks

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-10-11 DOI:10.1016/j.mtphys.2024.101569
Jianan Lyu , Dongwang Yang , Mingqi Zhang , Yutian Liu , Ziao Wang , Zinan Zhang , Gang Zhan , Chenyang Li , Yuting Wang , Weijie Gou , Yunfei Gao , Chengyu Li , Jinsong Wu , Xinfeng Tang , Yonggao Yan
{"title":"Revealing interfacial degradation of Bi2Te3-based micro thermoelectric device under current shocks","authors":"Jianan Lyu ,&nbsp;Dongwang Yang ,&nbsp;Mingqi Zhang ,&nbsp;Yutian Liu ,&nbsp;Ziao Wang ,&nbsp;Zinan Zhang ,&nbsp;Gang Zhan ,&nbsp;Chenyang Li ,&nbsp;Yuting Wang ,&nbsp;Weijie Gou ,&nbsp;Yunfei Gao ,&nbsp;Chengyu Li ,&nbsp;Jinsong Wu ,&nbsp;Xinfeng Tang ,&nbsp;Yonggao Yan","doi":"10.1016/j.mtphys.2024.101569","DOIUrl":null,"url":null,"abstract":"<div><div>Micro thermoelectric devices (micro-TEDs) offer great potential for IoT and electronic thermal management. However, they face challenges with reliability under high current densities. This study elucidates the failure mechanisms of Bi<sub>2</sub>Te<sub>3</sub>-based micro-TEDs subjected to current shocks. Experimental results indicate that at a high current density of 1800 A/cm<sup>2</sup>, the internal resistance of micro-TEDs increased by 12.9 % to 2.034 Ω. This led to a 52.0 % decrease in maximum output power at a 20 K temperature difference, dropping to 1.53 mW. Additionally, as the frequency of ON/OFF current applied to micro-TED increases, the resistance growth rate jumped from 0.764 mΩ/h for slow power cycling to 2.328 mΩ/h for fast power cycling. This indicates that higher cycling frequencies exacerbate the degradation of the device. In-situ TEM analysis revealed that current-induced elemental diffusion and electrical stress release led to the formation of NiTe<sub>2</sub> nanoparticles and intergranular fractures within the Bi<sub>2</sub>Te<sub>3</sub> materials. These results indicate that interfacial degradation and subsequent grain delamination are primary causes to micro-TED failure under current shocks. These findings underscore the significance of considering electrical stress in micro-TED design to enhance reliability and performance for high-power applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101569"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002451","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Micro thermoelectric devices (micro-TEDs) offer great potential for IoT and electronic thermal management. However, they face challenges with reliability under high current densities. This study elucidates the failure mechanisms of Bi2Te3-based micro-TEDs subjected to current shocks. Experimental results indicate that at a high current density of 1800 A/cm2, the internal resistance of micro-TEDs increased by 12.9 % to 2.034 Ω. This led to a 52.0 % decrease in maximum output power at a 20 K temperature difference, dropping to 1.53 mW. Additionally, as the frequency of ON/OFF current applied to micro-TED increases, the resistance growth rate jumped from 0.764 mΩ/h for slow power cycling to 2.328 mΩ/h for fast power cycling. This indicates that higher cycling frequencies exacerbate the degradation of the device. In-situ TEM analysis revealed that current-induced elemental diffusion and electrical stress release led to the formation of NiTe2 nanoparticles and intergranular fractures within the Bi2Te3 materials. These results indicate that interfacial degradation and subsequent grain delamination are primary causes to micro-TED failure under current shocks. These findings underscore the significance of considering electrical stress in micro-TED design to enhance reliability and performance for high-power applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示电流冲击下基于 Bi2Te3 的微型热电器件的界面降解现象
微型热电器件(micro-TED)为物联网和电子热管理提供了巨大的潜力。然而,它们在高电流密度下的可靠性面临挑战。本研究阐明了基于 Bi2Te3 的微型热电器件在电流冲击下的失效机制。实验结果表明,在 1800 A/cm2 的高电流密度下,micro-TED 的内阻增加了 12.9% 至 2.034 Ω。此外,随着施加到 micro-TED 的导通/关断电流频率的增加,电阻增长率从慢速功率循环时的 0.764 mΩ/h 跃升到快速功率循环时的 2.328 mΩ/h。这表明更高的循环频率会加剧器件的降解。原位 TEM 分析表明,电流引起的元素扩散和电应力释放导致 Bi2Te3 材料内部形成 NiTe2 纳米颗粒和晶间裂缝。这些结果表明,界面降解和随后的晶粒分层是电流冲击下微 TED 失效的主要原因。这些发现强调了在微型 TED 设计中考虑电应力对提高大功率应用的可靠性和性能的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Mist CVD Technology for Gallium Oxide Deposition: A Review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon Achieving ultra-high resistivity and outstanding piezoelectric properties by co-substitution in CaBi2Nb2O9 ceramics Data-driven design of thermal-mechanical multifunctional metamaterials Construction of bifunctional MOF-based composite electrocatalysts promoting oxygen evolution reaction and glucose oxidation reaction and its kinetic deciphering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1