Enhancing Optoelectronic Performance of All-Inorganic Double Perovskites via Halogen Doping: Synergistic Screening Strategies and Multiscale Simulations.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-10-22 Epub Date: 2024-10-11 DOI:10.1021/acs.jctc.4c01115
Xifeng Fu, Zhi-Ying Zhao, Sai Guo, Zi-Ang Nan, Lingyi Meng, Can-Zhong Lu
{"title":"Enhancing Optoelectronic Performance of All-Inorganic Double Perovskites via Halogen Doping: Synergistic Screening Strategies and Multiscale Simulations.","authors":"Xifeng Fu, Zhi-Ying Zhao, Sai Guo, Zi-Ang Nan, Lingyi Meng, Can-Zhong Lu","doi":"10.1021/acs.jctc.4c01115","DOIUrl":null,"url":null,"abstract":"<p><p>Designing all-inorganic double perovskites through element mixing is a promising strategy to enhance their optoelectronic performance and structural stability. The complex interplay between multilevel structures and optoelectronic properties in element-mixed double perovskites necessitates further in-depth theoretical exploration. In this study, we employ screening strategies and multiscale simulations combining first-principles methods and device-scale continuum models to identify two novel element-mixed compounds, Rb<sub>2</sub>AgInCl<sub>3</sub>I<sub>3</sub> and Cs<sub>2</sub>AgInCl<sub>3</sub>I<sub>3</sub>, as promising candidates for photovoltaic applications. These compounds exhibit favorable structural factors and suitable direct band gaps. Theoretical investigations using first-principles methods with the HSE06 functional reveal direct band gaps of 0.98 and 1.26 eV for Rb<sub>2</sub>AgInCl<sub>3</sub>I<sub>3</sub> and Cs<sub>2</sub>AgInCl<sub>3</sub>I<sub>3</sub>, respectively, with corresponding optical absorption coefficients exceeding 10<sup>5</sup> cm<sup>-1</sup> in the visible light range. Cs<sub>2</sub>AgInCl<sub>3</sub>I<sub>3</sub> features high charge mobilities of approximately 20 cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup> and a notable single-junction spectroscopic limited maximum efficiency (SLME) of 25.54%. Further analysis using the device-scale continuum model simulated the nonradiative recombination effects on power conversion efficiency, integrating quantum-mechanically calculated optoelectronic properties. These theoretical investigations, which bridge composition engineering with multiscale simulations, provide valuable insights into screening novel, lead-free, halogen<b>-</b>mixed double metal perovskite optoelectronic devices, highlighting their potential for high-performance solar energy applications.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing all-inorganic double perovskites through element mixing is a promising strategy to enhance their optoelectronic performance and structural stability. The complex interplay between multilevel structures and optoelectronic properties in element-mixed double perovskites necessitates further in-depth theoretical exploration. In this study, we employ screening strategies and multiscale simulations combining first-principles methods and device-scale continuum models to identify two novel element-mixed compounds, Rb2AgInCl3I3 and Cs2AgInCl3I3, as promising candidates for photovoltaic applications. These compounds exhibit favorable structural factors and suitable direct band gaps. Theoretical investigations using first-principles methods with the HSE06 functional reveal direct band gaps of 0.98 and 1.26 eV for Rb2AgInCl3I3 and Cs2AgInCl3I3, respectively, with corresponding optical absorption coefficients exceeding 105 cm-1 in the visible light range. Cs2AgInCl3I3 features high charge mobilities of approximately 20 cm2·V-1·s-1 and a notable single-junction spectroscopic limited maximum efficiency (SLME) of 25.54%. Further analysis using the device-scale continuum model simulated the nonradiative recombination effects on power conversion efficiency, integrating quantum-mechanically calculated optoelectronic properties. These theoretical investigations, which bridge composition engineering with multiscale simulations, provide valuable insights into screening novel, lead-free, halogen-mixed double metal perovskite optoelectronic devices, highlighting their potential for high-performance solar energy applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂卤素提高全无机双包晶石的光电性能:协同筛选策略与多尺度模拟。
通过元素混合来设计全无机双包晶石是提高其光电性能和结构稳定性的一种有前途的策略。元素混合双包晶石的多级结构与光电特性之间的复杂相互作用需要进一步深入的理论探索。在本研究中,我们结合第一原理方法和器件尺度连续模型,采用筛选策略和多尺度模拟,确定了两种新型元素混合化合物--Rb2AgInCl3I3 和 Cs2AgInCl3I3--作为光伏应用的候选化合物。这些化合物表现出有利的结构因素和合适的直接带隙。利用第一原理方法和 HSE06 函数进行的理论研究表明,Rb2AgInCl3I3 和 Cs2AgInCl3I3 的直接带隙分别为 0.98 和 1.26 eV,相应的光吸收系数在可见光范围内超过 105 cm-1。Cs2AgInCl3I3 的电荷迁移率高达约 20 cm2-V-1-s-1,单结光谱有限最大效率 (SLME) 为 25.54%。利用器件尺度连续模型进行的进一步分析模拟了非辐射重组对功率转换效率的影响,并整合了量子力学计算的光电特性。这些理论研究在成分工程与多尺度模拟之间架起了桥梁,为筛选新型、无铅、卤素混合双金属包晶光电器件提供了宝贵的见解,凸显了它们在高性能太阳能应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Electron-Spin Relaxation in Boron-Doped Graphene Nanoribbons. Does the Traditional Band Picture Correctly Describe the Electronic Structure of n-Doped Conjugated Polymers? A TD-DFT and Natural Transition Orbital Study. Determining the N-Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling. Host-Guest Binding Free Energies à la Carte: An Automated OneOPES Protocol. How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1