{"title":"Corticocortical and corticomuscular connectivity dynamics in standing posture: electroencephalography study.","authors":"Kimiya Fujio, Kenta Takeda, Hiroki Obata, Noritaka Kawashima","doi":"10.1093/cercor/bhae411","DOIUrl":null,"url":null,"abstract":"<p><p>Cortical mechanism is necessary for human standing control. Previous research has demonstrated that cortical oscillations and corticospinal excitability respond flexibly to postural demands. However, it is unclear how corticocortical and corticomuscular connectivity changes dynamically during standing with spontaneous postural sway and over time. This study investigated the dynamics of sway- and time-varying connectivity using electroencephalography and electromyography. Electroencephalography and electromyography were recorded in sitting position and 3 standing postures with varying base-of-support: normal standing, one-leg standing, and standing on a piece of wood. For sway-varying connectivity, corticomuscular connectivity was calculated based on the timing of peak velocity in anteroposterior sway. For time-varying connectivity, corticocortical connectivity was measured using the sliding-window approach. This study found that corticomuscular connectivity was strengthened at the peak velocity of postural sway in the γ- and β-frequency bands. For time-varying corticocortical connectivity, the θ-connectivity in all time-epoch was classified into 7 clusters including posture-relevant component. In one of the 7 clusters, strong connectivity pairs were concentrated in the mid-central region, and the proportion of epochs under narrow-base standing conditions was significantly higher, indicating a functional role for posture balance. These findings shed light on the connectivity dynamics and cortical oscillation that govern standing balance.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae411","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cortical mechanism is necessary for human standing control. Previous research has demonstrated that cortical oscillations and corticospinal excitability respond flexibly to postural demands. However, it is unclear how corticocortical and corticomuscular connectivity changes dynamically during standing with spontaneous postural sway and over time. This study investigated the dynamics of sway- and time-varying connectivity using electroencephalography and electromyography. Electroencephalography and electromyography were recorded in sitting position and 3 standing postures with varying base-of-support: normal standing, one-leg standing, and standing on a piece of wood. For sway-varying connectivity, corticomuscular connectivity was calculated based on the timing of peak velocity in anteroposterior sway. For time-varying connectivity, corticocortical connectivity was measured using the sliding-window approach. This study found that corticomuscular connectivity was strengthened at the peak velocity of postural sway in the γ- and β-frequency bands. For time-varying corticocortical connectivity, the θ-connectivity in all time-epoch was classified into 7 clusters including posture-relevant component. In one of the 7 clusters, strong connectivity pairs were concentrated in the mid-central region, and the proportion of epochs under narrow-base standing conditions was significantly higher, indicating a functional role for posture balance. These findings shed light on the connectivity dynamics and cortical oscillation that govern standing balance.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.