{"title":"A Novel Instruction Gesture Set Determination Scheme for Robust Myoelectric Control Applications.","authors":"Yuwen Ruan, Xiang Chen, Xu Zhang","doi":"10.1109/TBME.2024.3479232","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Myoelectric control technology has important application value in rehabilitation medicine, prosthesis control, human-computer interaction (HCI) and other fields. However, the user dependence of electromyography (EMG) pattern recognition is one of the key problems hindering the implementation of robust myoelectric control applications. Aimed at solving the user dependence problem, this paper proposed a novel instruction gesture set determination scheme for EMG pattern recognition in user-independent mode.</p><p><strong>Methods: </strong>The scheme uses T-distributed stochastic neighbor embedding (T-SNE) dimensionality reduction to analyze high-dimensional surface EMG data from multiple users and gestures. This process can identify gesture combinations with minimal individual differences and high separability.</p><p><strong>Results: </strong>The proposed scheme was validated using two large-scale EMG gesture databases with different acquisition devices, subjects, and gestures. Optimal and inferior gesture sets of varying sizes were identified. In recognition experiments conducted in both user-independent and electrode-offset modes, the optimal gesture sets demonstrated significantly higher recognition accuracies compared to the inferior sets, with improvements ranging from 12.57% to 36.92%.</p><p><strong>Conclusion: </strong>The results demonstrated that the separability of the obtained optimal gesture sets was significantly superior to that of the inferior sets, confirming the effectiveness of the proposed scheme in reducing user dependence in EMG pattern recognition.</p><p><strong>Significance: </strong>The study has certain application value to promote the development of myoelectric control technology. Specifically, the scheme proposed can be used to determine instruction gesture sets with low user dependence and high separability for myoelectric control applications.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3479232","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Myoelectric control technology has important application value in rehabilitation medicine, prosthesis control, human-computer interaction (HCI) and other fields. However, the user dependence of electromyography (EMG) pattern recognition is one of the key problems hindering the implementation of robust myoelectric control applications. Aimed at solving the user dependence problem, this paper proposed a novel instruction gesture set determination scheme for EMG pattern recognition in user-independent mode.
Methods: The scheme uses T-distributed stochastic neighbor embedding (T-SNE) dimensionality reduction to analyze high-dimensional surface EMG data from multiple users and gestures. This process can identify gesture combinations with minimal individual differences and high separability.
Results: The proposed scheme was validated using two large-scale EMG gesture databases with different acquisition devices, subjects, and gestures. Optimal and inferior gesture sets of varying sizes were identified. In recognition experiments conducted in both user-independent and electrode-offset modes, the optimal gesture sets demonstrated significantly higher recognition accuracies compared to the inferior sets, with improvements ranging from 12.57% to 36.92%.
Conclusion: The results demonstrated that the separability of the obtained optimal gesture sets was significantly superior to that of the inferior sets, confirming the effectiveness of the proposed scheme in reducing user dependence in EMG pattern recognition.
Significance: The study has certain application value to promote the development of myoelectric control technology. Specifically, the scheme proposed can be used to determine instruction gesture sets with low user dependence and high separability for myoelectric control applications.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.