{"title":"Construction of core genome multi-locus sequence typing schemes for population structure analyses of Nocardia species","authors":"Yizhak Hershko , Matan Slutzkin , Daniel Barkan , Amos Adler","doi":"10.1016/j.resmic.2024.104246","DOIUrl":null,"url":null,"abstract":"<div><div>Nocardia, a member of the Actinobacteria phylum, populates diverse habitats globally, with certain species being the cause of various clinical infections in humans. There is paucity of data regarding the population structure of this genus and of established genomic-based phylogenetic methods. We examined the whole genome sequences of 193 isolates spanning five major pathogenic <em>Nocardia</em> species sourced from public databases, encompassing diverse geographic regions. Using the chewBBACA pipeline, a species-specific core genome multilocus sequence typing (cgMLST) schema was created for <em>N. cyriacigeorgica</em>, <em>N. farcinica</em>, <em>N. brasiliensis</em>, <em>N. wallacei</em>, and <em>N. abscessus</em>. Additional genomic features that were examined included virulence factor (VF) profile, total length and open-reading frame count, the core genome length and core gene count, and GC content. Our findings indicated that: (i) <em>N. brasiliensis</em> diverges significantly from the other four species, underscoring its distinct evolutionary trajectory; (ii) the population structures of all species were polyclonal, with phylogenetic clustering occurring in the minority of isolates; (iii) clonal complexes were largely restricted to specific geographical locations, rather than demonstrating a global distribution, and (iv) initial evidence suggests no direct common-source transmission amongst the studied strains. Our study establishes a comprehensive genome-based phylogenetic methodology for population structure of <em>Nocardia</em> species.</div></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 8","pages":"Article 104246"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250824000974","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nocardia, a member of the Actinobacteria phylum, populates diverse habitats globally, with certain species being the cause of various clinical infections in humans. There is paucity of data regarding the population structure of this genus and of established genomic-based phylogenetic methods. We examined the whole genome sequences of 193 isolates spanning five major pathogenic Nocardia species sourced from public databases, encompassing diverse geographic regions. Using the chewBBACA pipeline, a species-specific core genome multilocus sequence typing (cgMLST) schema was created for N. cyriacigeorgica, N. farcinica, N. brasiliensis, N. wallacei, and N. abscessus. Additional genomic features that were examined included virulence factor (VF) profile, total length and open-reading frame count, the core genome length and core gene count, and GC content. Our findings indicated that: (i) N. brasiliensis diverges significantly from the other four species, underscoring its distinct evolutionary trajectory; (ii) the population structures of all species were polyclonal, with phylogenetic clustering occurring in the minority of isolates; (iii) clonal complexes were largely restricted to specific geographical locations, rather than demonstrating a global distribution, and (iv) initial evidence suggests no direct common-source transmission amongst the studied strains. Our study establishes a comprehensive genome-based phylogenetic methodology for population structure of Nocardia species.
期刊介绍:
Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.