On Recombination.

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2024-10-11 DOI:10.1162/artl_a_00453
Larry Bull
{"title":"On Recombination.","authors":"Larry Bull","doi":"10.1162/artl_a_00453","DOIUrl":null,"url":null,"abstract":"<p><p>The predominant explanations for including chromosomal recombination during meiosis are that it serves as a mechanism for repair or as a mechanism for increased adaptability. However, neither gives a clear immediate selective advantage to the reproducing organism itself. This letter revisits the idea that sex emerged and is maintained because it enables a simple form of fitness landscape smoothing to explain why recombination evolved. Although recombination was originally included in the idea, as with the other explanations, no immediate benefit was identified. That a benefit exists if the dividing cell(s) form a simple colony of the resulting haploids for some time after reproduction is explored here and shown to further increase the benefits of the landscape smoothing process.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-6"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00453","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The predominant explanations for including chromosomal recombination during meiosis are that it serves as a mechanism for repair or as a mechanism for increased adaptability. However, neither gives a clear immediate selective advantage to the reproducing organism itself. This letter revisits the idea that sex emerged and is maintained because it enables a simple form of fitness landscape smoothing to explain why recombination evolved. Although recombination was originally included in the idea, as with the other explanations, no immediate benefit was identified. That a benefit exists if the dividing cell(s) form a simple colony of the resulting haploids for some time after reproduction is explored here and shown to further increase the benefits of the landscape smoothing process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于重组
在减数分裂过程中进行染色体重组的主要解释是,这是一种修复机制或一种提高适应性的机制。然而,这两种解释都没有给繁殖生物本身带来明显的直接选择性优势。这封信再次提出了一个观点,即性的出现和维持是因为它能使一种简单的适应性景观平滑化,从而解释了重组进化的原因。虽然重组最初也包含在这一观点中,但与其他解释一样,并没有发现直接的益处。如果分裂的细胞在繁殖后的一段时间内形成一个简单的单倍体群落,那么就会产生益处,本文对此进行了探讨,结果表明这将进一步增加景观平滑过程的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1