{"title":"Effects of Solvation and Temperature on the Energetics of BiVO4 Surfaces with Varying Composition for Solar Water Splitting","authors":"Giacomo Melani, Wennie Wang, Francois Gygi, Kyoung-Shin Choi and Giulia Galli*, ","doi":"10.1021/acsenergylett.4c0191310.1021/acsenergylett.4c01913","DOIUrl":null,"url":null,"abstract":"<p >Photoelectrodes used in solar water splitting must operate in aqueous media. However, computational studies that explicitly compare the dry and solvated photoelectrode energetics at finite temperature and the impact of the photoelectrode surface composition and surface defects are lacking. Here, we used first-principles molecular dynamics simulations to investigate the solvation and thermal effects on the energetics of the BiVO<sub>4</sub>(010) surface with different surface compositions and oxygen vacancies, a common defect responsible for the intrinsic n-type behavior of BiVO<sub>4</sub>. We find that the alignment of the photoelectrode electronic bands with the water redox potentials is modified in the presence of water and that solvation effects and thermal fluctuations are more prominent for Bi-rich surfaces, especially so in the presence of oxygen vacancies. Our results provide a detailed understanding of the behavior of BiVO<sub>4</sub> photoanodes operating in aqueous media, as a function of surface composition, and are directly comparable with experiments.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 10","pages":"5166–5171 5166–5171"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c01913","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectrodes used in solar water splitting must operate in aqueous media. However, computational studies that explicitly compare the dry and solvated photoelectrode energetics at finite temperature and the impact of the photoelectrode surface composition and surface defects are lacking. Here, we used first-principles molecular dynamics simulations to investigate the solvation and thermal effects on the energetics of the BiVO4(010) surface with different surface compositions and oxygen vacancies, a common defect responsible for the intrinsic n-type behavior of BiVO4. We find that the alignment of the photoelectrode electronic bands with the water redox potentials is modified in the presence of water and that solvation effects and thermal fluctuations are more prominent for Bi-rich surfaces, especially so in the presence of oxygen vacancies. Our results provide a detailed understanding of the behavior of BiVO4 photoanodes operating in aqueous media, as a function of surface composition, and are directly comparable with experiments.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.