Lightweight Food Image Recognition With Global Shuffle Convolution

Guorui Sheng;Weiqing Min;Tao Yao;Jingru Song;Yancun Yang;Lili Wang;Shuqiang Jiang
{"title":"Lightweight Food Image Recognition With Global Shuffle Convolution","authors":"Guorui Sheng;Weiqing Min;Tao Yao;Jingru Song;Yancun Yang;Lili Wang;Shuqiang Jiang","doi":"10.1109/TAFE.2024.3386713","DOIUrl":null,"url":null,"abstract":"Consumer behaviors and habits in food choices impact their physical health and have implications for climate change and global warming. Efficient food image recognition can assist individuals in making more environmentally friendly and healthier dietary choices using end devices, such as smartphones. Simultaneously, it can enhance the efficiency of server-side training, thereby reducing carbon emissions. We propose a lightweight deep neural network named Global Shuffle Net (GSNet) that can efficiently recognize food images. In GSNet, we develop a novel convolution method called global shuffle convolution, which captures the dependence between long-range pixels. Merging global shuffle convolution with classic local convolution yields a framework that works as the backbone of GSNet. Through GSNet's ability to capture the dependence between long-range pixels at the start of the network, by restricting the number of layers in the middle and rear, the parameters and floating operation operations (FLOPs) can be minimized without compromising the performance, thus permitting a lightweight goal to be achieved. Experimental results on four popular food recognition datasets demonstrate that our approach achieves state-of-the-art performance with higher accuracy and fewer FLOPs and parameters. For example, in comparison to the current state-of-the-art model of MobileViTv2, GSNet achieved 87.9% accuracy of the top-1 level on the Eidgenössische Technische Hochschule Zürich (ETHZ) Food-101 dataset with 28% reduction in the parameters, 37% reduction in the FLOPs, but a 0.7% more accuracy.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"392-402"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10517765/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consumer behaviors and habits in food choices impact their physical health and have implications for climate change and global warming. Efficient food image recognition can assist individuals in making more environmentally friendly and healthier dietary choices using end devices, such as smartphones. Simultaneously, it can enhance the efficiency of server-side training, thereby reducing carbon emissions. We propose a lightweight deep neural network named Global Shuffle Net (GSNet) that can efficiently recognize food images. In GSNet, we develop a novel convolution method called global shuffle convolution, which captures the dependence between long-range pixels. Merging global shuffle convolution with classic local convolution yields a framework that works as the backbone of GSNet. Through GSNet's ability to capture the dependence between long-range pixels at the start of the network, by restricting the number of layers in the middle and rear, the parameters and floating operation operations (FLOPs) can be minimized without compromising the performance, thus permitting a lightweight goal to be achieved. Experimental results on four popular food recognition datasets demonstrate that our approach achieves state-of-the-art performance with higher accuracy and fewer FLOPs and parameters. For example, in comparison to the current state-of-the-art model of MobileViTv2, GSNet achieved 87.9% accuracy of the top-1 level on the Eidgenössische Technische Hochschule Zürich (ETHZ) Food-101 dataset with 28% reduction in the parameters, 37% reduction in the FLOPs, but a 0.7% more accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用全局洗牌卷积实现轻量级食品图像识别
消费者选择食物的行为和习惯会影响他们的身体健康,并对气候变化和全球变暖产生影响。高效的食物图像识别技术可以帮助人们利用智能手机等终端设备做出更环保、更健康的饮食选择。同时,它还能提高服务器端训练的效率,从而减少碳排放。我们提出了一种轻量级深度神经网络,名为 "全局洗牌网(GSNet)",它能有效识别食物图像。在 GSNet 中,我们开发了一种名为全局洗牌卷积的新型卷积方法,它能捕捉远距离像素之间的依赖关系。将全局洗牌卷积与经典的局部卷积相结合,产生了一个框架,作为 GSNet 的骨干。GSNet 能够在网络开始时捕捉远距离像素之间的依赖关系,通过限制中后部的层数,可以在不影响性能的情况下最大限度地减少参数和浮点运算(FLOP),从而实现轻量级目标。在四个流行的食品识别数据集上的实验结果表明,我们的方法以更高的准确率、更少的 FLOPs 和参数实现了最先进的性能。例如,与目前最先进的 MobileViTv2 模型相比,GSNet 在苏黎世联邦理工学院 (Eidgenössische Technische Hochschule Zürich) Food-101 数据集上的 top-1 级准确率达到 87.9%,参数减少了 28%,FLOPs 减少了 37%,但准确率提高了 0.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on AgriFood Electronics Vol. 2 Table of Contents Front Cover IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1