Food Physical Contamination Detection Using AI-Enhanced Electrical Impedance Tomography

Basma Alsaid;Tracy Saroufil;Romaissa Berim;Sohaib Majzoub;Abir J. Hussain
{"title":"Food Physical Contamination Detection Using AI-Enhanced Electrical Impedance Tomography","authors":"Basma Alsaid;Tracy Saroufil;Romaissa Berim;Sohaib Majzoub;Abir J. Hussain","doi":"10.1109/TAFE.2024.3415124","DOIUrl":null,"url":null,"abstract":"Physical contamination of food is a prevalent issue within the food production industry. Contamination can occur at any stage of the food processing line. Many techniques are used in the literature for the detection of physical contamination in food. However, these techniques have some limitations when applied to fresh food products, particularly, when samples are characterized by diverse shapes and sizes. In addition, some of these techniques fail to detect hidden contaminants. In this work, we propose a novel approach to detect hidden physical contamination in fresh food products, including plastic fragments, stone fragments, and other foreign food objects, such as different food types that might inadvertently contaminate the sample. Electrical impedance tomography (EIT) is utilized to capture the impedance image of the sample to be used for contamination detection. Four deep learning models are trained using the EIT images to perform binary classification to identify contaminated samples. Three of the models are developed to detect the contaminants, each on its own, while the fourth model is used to detect any of the contaminates put together. The trained models achieved promising results with the accuracy of 85%, 92.9%, and 85.7% detecting plastic, stones, and other food types, respectively. The obtained accuracy when all contaminants put together was 78%. This performance shows the efficacy of the proposed approach over the existing techniques in the field.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"518-526"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10609755/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physical contamination of food is a prevalent issue within the food production industry. Contamination can occur at any stage of the food processing line. Many techniques are used in the literature for the detection of physical contamination in food. However, these techniques have some limitations when applied to fresh food products, particularly, when samples are characterized by diverse shapes and sizes. In addition, some of these techniques fail to detect hidden contaminants. In this work, we propose a novel approach to detect hidden physical contamination in fresh food products, including plastic fragments, stone fragments, and other foreign food objects, such as different food types that might inadvertently contaminate the sample. Electrical impedance tomography (EIT) is utilized to capture the impedance image of the sample to be used for contamination detection. Four deep learning models are trained using the EIT images to perform binary classification to identify contaminated samples. Three of the models are developed to detect the contaminants, each on its own, while the fourth model is used to detect any of the contaminates put together. The trained models achieved promising results with the accuracy of 85%, 92.9%, and 85.7% detecting plastic, stones, and other food types, respectively. The obtained accuracy when all contaminants put together was 78%. This performance shows the efficacy of the proposed approach over the existing techniques in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能增强型电阻抗断层扫描技术检测食品物理污染
食品的物理污染是食品生产行业普遍存在的问题。污染可能发生在食品加工生产线的任何阶段。文献中使用了许多检测食品物理污染的技术。然而,当这些技术应用于新鲜食品时,尤其是当样品的形状和大小各不相同时,就会受到一些限制。此外,其中一些技术还无法检测到隐藏的污染物。在这项工作中,我们提出了一种新方法来检测新鲜食品中隐藏的物理污染,包括塑料碎片、石块碎片和其他异物,如可能无意中污染样品的不同食物类型。电阻抗层析成像(EIT)被用来捕捉样品的阻抗图像,以用于污染检测。使用 EIT 图像训练了四个深度学习模型,以执行二元分类来识别受污染的样品。其中三个模型用于单独检测污染物,而第四个模型则用于综合检测任何污染物。经过训练的模型在检测塑料、石块和其他食物类型方面分别取得了 85%、92.9% 和 85.7% 的准确率,取得了可喜的成果。当所有杂质加在一起时,准确率为 78%。这一结果表明,与该领域的现有技术相比,所提出的方法非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on AgriFood Electronics Vol. 2 Table of Contents Front Cover IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1