A Process-Aware Analytical Gate Resistance Model for Nanosheet Field-Effect Transistors

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-30 DOI:10.1109/JEDS.2024.3469917
Junha Suk;Yohan Kim;Jungho Do;Garoom Kim;Woojin Rim;Sanghoon Baek;Seiseung Yoon;Soyoung Kim
{"title":"A Process-Aware Analytical Gate Resistance Model for Nanosheet Field-Effect Transistors","authors":"Junha Suk;Yohan Kim;Jungho Do;Garoom Kim;Woojin Rim;Sanghoon Baek;Seiseung Yoon;Soyoung Kim","doi":"10.1109/JEDS.2024.3469917","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a process-aware analytical gate resistance model for nanosheet field-effect transistors (NSFETs). The proposed NSFET gate resistance is modeled by applying the distributed resistance coefficient, which can be used when current flows vertically and horizontally. By predicting the direction of current flow, the resistance components are approximated in series with parallel connection of divided segments. The proposed model can reflect changes in structural parameters, making it possible to predict the scaling trend of NSFETs. This is validated through TCAD simulation results. The proposed model can be implemented in general compact models such as the Berkeley short channel IGFET model (BSIM)-common multi-gate (CMG) and can be used to predict circuit performance more accurately.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10699326","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10699326/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a process-aware analytical gate resistance model for nanosheet field-effect transistors (NSFETs). The proposed NSFET gate resistance is modeled by applying the distributed resistance coefficient, which can be used when current flows vertically and horizontally. By predicting the direction of current flow, the resistance components are approximated in series with parallel connection of divided segments. The proposed model can reflect changes in structural parameters, making it possible to predict the scaling trend of NSFETs. This is validated through TCAD simulation results. The proposed model can be implemented in general compact models such as the Berkeley short channel IGFET model (BSIM)-common multi-gate (CMG) and can be used to predict circuit performance more accurately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米片场效应晶体管的工艺感知分析栅极电阻模型
本文针对纳米片场效应晶体管(NSFET)提出了一种工艺感知分析栅极电阻模型。建议的 NSFET 栅极电阻模型采用分布式电阻系数,当电流垂直和水平流动时均可使用。通过预测电流流动的方向,电阻分量可近似为串联与并联的分段。所提出的模型可以反映结构参数的变化,从而可以预测 NSFET 的扩展趋势。TCAD 仿真结果验证了这一点。提出的模型可以在伯克利短沟道 IGFET 模型 (BSIM) - 普通多门 (CMG) 等一般紧凑模型中实现,并可用于更准确地预测电路性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1