Structure Design of InGaN-Based Blue Laser Diodes With ITO and Nanoporous GaN Cladding Layers

IF 4.3 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-09-19 DOI:10.1109/JSTQE.2024.3464530
Jinbin Yang;Meixin Feng;Xiujian Sun;Shuming Zhang;Masao Ikeda;Qian Sun;Hui Yang
{"title":"Structure Design of InGaN-Based Blue Laser Diodes With ITO and Nanoporous GaN Cladding Layers","authors":"Jinbin Yang;Meixin Feng;Xiujian Sun;Shuming Zhang;Masao Ikeda;Qian Sun;Hui Yang","doi":"10.1109/JSTQE.2024.3464530","DOIUrl":null,"url":null,"abstract":"AlGaN is usually used as the cladding layers for GaN-based laser diodes, but it features a low refractive index difference and large lattice mismatch with GaN, resulting in weak optical confinement and large tensile stress, and hence greatly affecting the laser performance. In response, indium tin oxide (ITO) and nanoporous GaN (NP-GaN) with low refractive indices have emerged as promising alternatives. In this study, we conducted simulations to assess the impact of the ITO and NP-GaN thicknesses on device performance through the finite-difference time-domain method. Furthermore, we investigated the influence of nanopore distribution within the NP-GaN, finding that the nanopore size and arrangement near the waveguide layer play key roles. Based on these insights, we propose a novel laser structure with ITO and NP-GaN cladding layers, achieving an 18% increase in the optical confinement factor, along with reductions of 13% in absorption loss and 14% in threshold gain compared to conventional laser diodes utilizing AlGaN cladding layers. It is of great interest to the III-nitride semiconductors and semiconductor laser communities.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-6"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684437/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

AlGaN is usually used as the cladding layers for GaN-based laser diodes, but it features a low refractive index difference and large lattice mismatch with GaN, resulting in weak optical confinement and large tensile stress, and hence greatly affecting the laser performance. In response, indium tin oxide (ITO) and nanoporous GaN (NP-GaN) with low refractive indices have emerged as promising alternatives. In this study, we conducted simulations to assess the impact of the ITO and NP-GaN thicknesses on device performance through the finite-difference time-domain method. Furthermore, we investigated the influence of nanopore distribution within the NP-GaN, finding that the nanopore size and arrangement near the waveguide layer play key roles. Based on these insights, we propose a novel laser structure with ITO and NP-GaN cladding layers, achieving an 18% increase in the optical confinement factor, along with reductions of 13% in absorption loss and 14% in threshold gain compared to conventional laser diodes utilizing AlGaN cladding layers. It is of great interest to the III-nitride semiconductors and semiconductor laser communities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有 ITO 和纳米多孔 GaN 包层的 InGaN 基蓝色激光二极管的结构设计
氮化镓通常用作基于氮化镓的激光二极管的包层,但它与氮化镓的折射率差低、晶格失配大,导致光约束弱、拉伸应力大,从而极大地影响了激光性能。因此,具有低折射率的氧化铟锡(ITO)和纳米多孔氮化镓(NP-GaN)成为有前途的替代品。在本研究中,我们通过有限差分时域法进行了模拟,以评估 ITO 和 NP-GaN 厚度对器件性能的影响。此外,我们还研究了 NP-GaN 内纳米孔分布的影响,发现波导层附近的纳米孔大小和排列起着关键作用。基于这些见解,我们提出了一种具有 ITO 和 NP-GaN 包层的新型激光结构,与使用 AlGaN 包层的传统激光二极管相比,其光约束因子提高了 18%,吸收损耗降低了 13%,阈值增益降低了 14%。它引起了 III 族氮化物半导体和半导体激光界的极大兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Selected Topics in Quantum Electronics
IEEE Journal of Selected Topics in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
10.60
自引率
2.00%
发文量
212
审稿时长
3 months
期刊介绍: Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.
期刊最新文献
Editorial: Advances and Applications of Hollow-Core Fibers Ambipolar Transport in Polycrystalline GeSn Transistors for Complementary Metal-Oxide-Semiconductor Applications Design of the Waveguide Integrated GeSn PDs on a SiN Platform in $2\,\mathrm{\mu m}$ Wavelength Band Lasing of Quantum-Dot Micropillar Lasers Under Elevated Temperatures Simplified Designs of Ge1-ySny/Si(100) Diodes for Facile Integration With Si Technologies: Synthesis, Electrical Performance and Modeling Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1