Wenjun Tian, Yunxuan Zhou, Tao Deng, Tao Chen, Jun Tan, Xianhua Chen, Fusheng Pan
{"title":"Probing the Structural Stability, Mechanical, Electronic, and Thermodynamic Properties of Mg–Y–Zn Ternary Compounds via First-Principles Calculations","authors":"Wenjun Tian, Yunxuan Zhou, Tao Deng, Tao Chen, Jun Tan, Xianhua Chen, Fusheng Pan","doi":"10.1007/s40195-024-01746-5","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium alloys have large reserves and good strength, attracting a lot of attention. Herein, the thermodynamic, elastic constants, and electronic properties of the Mg-Y-Zn ternary compounds were calculated; among them, MgYZn<sub>2</sub> belongs to the cubic structure, MgYZn, Mg<sub>3</sub>Y<sub>2</sub>Zn<sub>4</sub>, and Mg<sub>14</sub>YZn-1 belong to the hexagonal structure, Mg<sub>6</sub>YZn-1, Mg<sub>6</sub>YZn-2, MgY<sub>2</sub>Zn, and Mg<sub>14</sub>YZn-2 possess the orthorhombic structure, and Mg<sub>3</sub>Y<sub>2</sub>Zn<sub>3</sub> is trigonal structure. The calculated cohesive energies of the results show that all compounds are thermodynamically stable. Moreover, the MgYZn<sub>2</sub> compound exhibits the highest modulus of 76.84 MPa, and the Mg<sub>3</sub>Y<sub>2</sub>Zn<sub>3</sub> has the biggest hardness of 6.6 GPa. In addition, the Mg<sub>6</sub>YZn-2 has the strongest elastic anisotropic with <i>A</i><sup>U</sup> of 6.14 and <i>A</i><sub>G</sub> of 0.38, respectively. According to the population analysis, the Mg-Y covalent bond is due to the biggest bond population. The shortest weighted average bond length indicates that MgYZn<sub>2</sub> has better elastic properties. Furthermore, the calculated limiting thermal conductivity results show that Mg<sub>14</sub>YZn-2 has better thermal conductivity with maximum values of 0.94 W·m<sup>−1</sup>·K<sup>−1</sup> and 0.74 W·m<sup>−1</sup>·K<sup>−1</sup> for Clarke’s and Cahill’s models.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01746-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesium alloys have large reserves and good strength, attracting a lot of attention. Herein, the thermodynamic, elastic constants, and electronic properties of the Mg-Y-Zn ternary compounds were calculated; among them, MgYZn2 belongs to the cubic structure, MgYZn, Mg3Y2Zn4, and Mg14YZn-1 belong to the hexagonal structure, Mg6YZn-1, Mg6YZn-2, MgY2Zn, and Mg14YZn-2 possess the orthorhombic structure, and Mg3Y2Zn3 is trigonal structure. The calculated cohesive energies of the results show that all compounds are thermodynamically stable. Moreover, the MgYZn2 compound exhibits the highest modulus of 76.84 MPa, and the Mg3Y2Zn3 has the biggest hardness of 6.6 GPa. In addition, the Mg6YZn-2 has the strongest elastic anisotropic with AU of 6.14 and AG of 0.38, respectively. According to the population analysis, the Mg-Y covalent bond is due to the biggest bond population. The shortest weighted average bond length indicates that MgYZn2 has better elastic properties. Furthermore, the calculated limiting thermal conductivity results show that Mg14YZn-2 has better thermal conductivity with maximum values of 0.94 W·m−1·K−1 and 0.74 W·m−1·K−1 for Clarke’s and Cahill’s models.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.