L. Y. Jabbarova, I. I. Mustafaev, A. S. Mirzaeva, N. A. Ibadov
{"title":"Influence of Ionizıng Radiation on Physicochemical and Operational Properties of Diesel Fuel with Added Toluene","authors":"L. Y. Jabbarova, I. I. Mustafaev, A. S. Mirzaeva, N. A. Ibadov","doi":"10.1134/S1066362224040155","DOIUrl":null,"url":null,"abstract":"<p>Radiation resistance of diesel fuel with the addition of various percentages of toluene was studied. The experiments were carried out for a long time to study the postpolymerization processes. The kinetics of processes during irradiation of pure diesel fuel was studied at the temperature <i>T</i> = 20°C and dose rate <i>P</i> = 0.07 Gy/s in the range of absorbed doses <i>D</i> = 15–150 kGy, and a mixture of toluene with diesel fuel was irradiated within the absorbed dose range <i>D</i> = 24–90 kGy at a toluene concentration of 1, 3, and 5 vol %. Analysis by gas chromatography–mass spectrometric (GC/MS) was performed, and the density, viscosity, and iodine number of the diesel fuel before and after irradiation at various absorbed doses were determined. The kinetics of postpolymerization processes after the end of irradiation shows that the rate of the process and its share in the total polymerization depend on the irradiation time, initial mixture density, and dose. By adding additives (antirads), one can choose the composition of diesel fuel that will better withstand radiation exposure. It is necessary to find the optimal concentration of toluene in the composition of diesel fuel, at which the viscosity and density will not change with an increase in the absorbed dose.</p>","PeriodicalId":747,"journal":{"name":"Radiochemistry","volume":"66 4","pages":"531 - 541"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1066362224040155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation resistance of diesel fuel with the addition of various percentages of toluene was studied. The experiments were carried out for a long time to study the postpolymerization processes. The kinetics of processes during irradiation of pure diesel fuel was studied at the temperature T = 20°C and dose rate P = 0.07 Gy/s in the range of absorbed doses D = 15–150 kGy, and a mixture of toluene with diesel fuel was irradiated within the absorbed dose range D = 24–90 kGy at a toluene concentration of 1, 3, and 5 vol %. Analysis by gas chromatography–mass spectrometric (GC/MS) was performed, and the density, viscosity, and iodine number of the diesel fuel before and after irradiation at various absorbed doses were determined. The kinetics of postpolymerization processes after the end of irradiation shows that the rate of the process and its share in the total polymerization depend on the irradiation time, initial mixture density, and dose. By adding additives (antirads), one can choose the composition of diesel fuel that will better withstand radiation exposure. It is necessary to find the optimal concentration of toluene in the composition of diesel fuel, at which the viscosity and density will not change with an increase in the absorbed dose.
期刊介绍:
Radiochemistry is a journal that covers the theoretical and applied aspects of radiochemistry, including basic nuclear physical properties of radionuclides; chemistry of radioactive elements and their compounds; the occurrence and behavior of natural and artificial radionuclides in the environment; nuclear fuel cycle; radiochemical analysis methods and devices; production and isolation of radionuclides, synthesis of labeled compounds, new applications of radioactive tracers; radiochemical aspects of nuclear medicine; radiation chemistry and after-effects of nuclear transformations.