{"title":"Axial compressive performance and prediction models of confined concrete cylinders made of BFRP-PVC composite tubes","authors":"Wenyu Wang, Huaxin Liu, Yue Zhong, Genjin Liu","doi":"10.1007/s43452-024-01053-x","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, fiber-reinforced polymer-polyvinyl chloride (FRP-PVC) tubular cylinders have been widely used in civil engineering applications. Concrete-filled FRP-PVC tubes possess excellent mechanical behavior and high durability. In this work, a composite reinforcement system with basalt fiber reinforced polymer (BFRP) strips wrapped around the surface of polyvinyl chloride (PVC) tubes is proposed for existing concrete cylinders. In addition, the effectiveness of the composite reinforcement system is evaluated and the working mechanism is studied. Monotonic axial compression tests are conducted on 39 concrete cylindrical specimens, and the parameters studied includs the number of BFRP layers, the net spacing of BFRP strips, and the type of reinforcement. The test results demonstrate that the bearing capacity of specimens with BFRP strips was enhanced by 8.42% up to 45.43% compared to unreinforced concrete cylinders. While, the bearing capability of BFRP-PVC reinforced specimens increase by 26.54% up to 62.30% compared with the control group specimen. Furthermore, a strength model that considers equivalent constraint effect coefficients is proposed based on existing strength models. The difference between the predicted results and the experimental results is within 15%. Research has shown that the reinforcement effect of the composite system is significant, and the research results can provide reference for engineering practice.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"24 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01053-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, fiber-reinforced polymer-polyvinyl chloride (FRP-PVC) tubular cylinders have been widely used in civil engineering applications. Concrete-filled FRP-PVC tubes possess excellent mechanical behavior and high durability. In this work, a composite reinforcement system with basalt fiber reinforced polymer (BFRP) strips wrapped around the surface of polyvinyl chloride (PVC) tubes is proposed for existing concrete cylinders. In addition, the effectiveness of the composite reinforcement system is evaluated and the working mechanism is studied. Monotonic axial compression tests are conducted on 39 concrete cylindrical specimens, and the parameters studied includs the number of BFRP layers, the net spacing of BFRP strips, and the type of reinforcement. The test results demonstrate that the bearing capacity of specimens with BFRP strips was enhanced by 8.42% up to 45.43% compared to unreinforced concrete cylinders. While, the bearing capability of BFRP-PVC reinforced specimens increase by 26.54% up to 62.30% compared with the control group specimen. Furthermore, a strength model that considers equivalent constraint effect coefficients is proposed based on existing strength models. The difference between the predicted results and the experimental results is within 15%. Research has shown that the reinforcement effect of the composite system is significant, and the research results can provide reference for engineering practice.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.