Bowen Jiang, Muhammad Talha Hussain, Xiangyuan Zeng
{"title":"Attitude-adjusting dynamical behavior of cubic rover on low-gravity testbed","authors":"Bowen Jiang, Muhammad Talha Hussain, Xiangyuan Zeng","doi":"10.1007/s42064-023-0185-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cubic rovers that traverse by hopping systems are promising in low-gravity environments. Although several analyses of the control methods and mobility of the cubic rover are available, investigations of its attitude-adjusting behavior are still limited. This study derives the dynamic equations of the two attitude-adjusting modes of the cubic rover, referred to as walking and twisting. The relationships between the speed threshold and rotation angle of the cubic rover were investigated in both rigid and regolith environments using a self-designed low-gravity testbed. Comparative studies were conducted by considering the experimental and simulated outputs. The results of this study can be interesting for roving mission planning when exploring planetary moons and small celestial bodies.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0185-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cubic rovers that traverse by hopping systems are promising in low-gravity environments. Although several analyses of the control methods and mobility of the cubic rover are available, investigations of its attitude-adjusting behavior are still limited. This study derives the dynamic equations of the two attitude-adjusting modes of the cubic rover, referred to as walking and twisting. The relationships between the speed threshold and rotation angle of the cubic rover were investigated in both rigid and regolith environments using a self-designed low-gravity testbed. Comparative studies were conducted by considering the experimental and simulated outputs. The results of this study can be interesting for roving mission planning when exploring planetary moons and small celestial bodies.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.