Véronique Bouteiller, Thierry Chaussadent, Eric Chauveau, Amandine Bonnet, Philippe Mauger, Victor Da-Silva
{"title":"A 10-year study of the corrosion resistance of stainless steels used as reinforcement in chloride-contaminated concrete exposed to severe conditions","authors":"Véronique Bouteiller, Thierry Chaussadent, Eric Chauveau, Amandine Bonnet, Philippe Mauger, Victor Da-Silva","doi":"10.1617/s11527-024-02468-x","DOIUrl":null,"url":null,"abstract":"<div><p>The corrosion of carbon steel reinforcements is the main cause of deterioration in reinforced concrete structures. Stainless steel can be a solution to increase the service life of structures exposed to severe chloride environments. This paper describes the results obtained in an experimental study seeking to monitor corrosion over a long-term period (10 years) without the use of accelerated tests. Concrete samples containing admixed chloride and reinforced with 5 different steel grades were exposed to high temperature and high relative humidity in a climatic chamber for 10 years. Visual inspection, corrosion potential, linear polarisation resistance and electrochemical impedance spectroscopy measurements were carried out throughout this period. Corrosion current density was calculated to monitor the evolution of corrosion. The methodology was validated on a martensitic stainless steel (grade 1.4021) with the original finding that corrosion occurs over three time steps. None of the duplex steels (grades 1.4062, 1.4362 and 1.4462) showed corrosion after 10 years, making them a very interesting solution for structures located in severe chloride environments. Mass loss corrosion laws over time were determined. Prediction of corrosion was discussed.Please check and confirm the edit made in the article title.confirmedKindly check and confirm the organization name for affiliations 1 and 2.affiliation 1: OK\naffiliation 2: OK</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02468-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The corrosion of carbon steel reinforcements is the main cause of deterioration in reinforced concrete structures. Stainless steel can be a solution to increase the service life of structures exposed to severe chloride environments. This paper describes the results obtained in an experimental study seeking to monitor corrosion over a long-term period (10 years) without the use of accelerated tests. Concrete samples containing admixed chloride and reinforced with 5 different steel grades were exposed to high temperature and high relative humidity in a climatic chamber for 10 years. Visual inspection, corrosion potential, linear polarisation resistance and electrochemical impedance spectroscopy measurements were carried out throughout this period. Corrosion current density was calculated to monitor the evolution of corrosion. The methodology was validated on a martensitic stainless steel (grade 1.4021) with the original finding that corrosion occurs over three time steps. None of the duplex steels (grades 1.4062, 1.4362 and 1.4462) showed corrosion after 10 years, making them a very interesting solution for structures located in severe chloride environments. Mass loss corrosion laws over time were determined. Prediction of corrosion was discussed.Please check and confirm the edit made in the article title.confirmedKindly check and confirm the organization name for affiliations 1 and 2.affiliation 1: OK
affiliation 2: OK
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.