Bishal Bhattarai, Brandon Hilliard, Daniele Tonina, William J. Reeder, Ralph Budwig, Benjamin T. Martin, Tao Xing
{"title":"Evaluation of Reynolds-averaged Navier-Stokes turbulence models in open channel flow over salmon redds","authors":"Bishal Bhattarai, Brandon Hilliard, Daniele Tonina, William J. Reeder, Ralph Budwig, Benjamin T. Martin, Tao Xing","doi":"10.1007/s42241-024-0051-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates computational fluid dynamics (CFD) turbulence closures for Reynolds-averaged Navier-Stokes (RANS) equations against experimental data to model complex open channel flows, like those occurring over dune-shaped salmon spawning nests called “redds”. Open channel flow complexity, characterized by near-bed turbulence, adverse pressure, and free surfaces, requires suitable turbulence closure capable of capturing the flow structure between streambed and water surface. We evaluated three RANS models: Standard <i>k - ω</i>, shear-stress transport (SST) <i>k - ω</i> and realizable <i>k - ε</i>, along with four wall treatments for the realizable <i>k - ε</i>: Standard, and scalable wall functions, enhanced wall treatment, and an unconventional closure combining standard wall function with near-wall mesh resolving the viscous sublayer. Despite all models generally capturing the bulk flow characteristics, considerable discrepancies were evident in their ability to predict specific flow features, such as flow detachments. The realizable <i>k - ε</i> model, with standard wall function and mesh resolving viscous sublayer, outperformed other closures in predicting near-wall flow separations, velocity fields, and free surface elevation. This realizable <i>k - ε</i> model with a log-layer resolved mesh predicted the free surface elevation equally well but lacked precision for near-wall flows. The SST <i>k - ω</i> model outperformed in predicting turbulent kinetic energy and provided better predictions of the near-boundary velocity distributions than realizable <i>k - ε</i> closure with any of the conventional wall treatments but overestimated the separation vortex magnitude. The standard <i>k - ω</i> model also overestimated near-wall separation. This study highlights the variability in accuracy among turbulence models, underlining the need for careful model selection based on specific prediction regions.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 4","pages":"741 - 756"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0051-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates computational fluid dynamics (CFD) turbulence closures for Reynolds-averaged Navier-Stokes (RANS) equations against experimental data to model complex open channel flows, like those occurring over dune-shaped salmon spawning nests called “redds”. Open channel flow complexity, characterized by near-bed turbulence, adverse pressure, and free surfaces, requires suitable turbulence closure capable of capturing the flow structure between streambed and water surface. We evaluated three RANS models: Standard k - ω, shear-stress transport (SST) k - ω and realizable k - ε, along with four wall treatments for the realizable k - ε: Standard, and scalable wall functions, enhanced wall treatment, and an unconventional closure combining standard wall function with near-wall mesh resolving the viscous sublayer. Despite all models generally capturing the bulk flow characteristics, considerable discrepancies were evident in their ability to predict specific flow features, such as flow detachments. The realizable k - ε model, with standard wall function and mesh resolving viscous sublayer, outperformed other closures in predicting near-wall flow separations, velocity fields, and free surface elevation. This realizable k - ε model with a log-layer resolved mesh predicted the free surface elevation equally well but lacked precision for near-wall flows. The SST k - ω model outperformed in predicting turbulent kinetic energy and provided better predictions of the near-boundary velocity distributions than realizable k - ε closure with any of the conventional wall treatments but overestimated the separation vortex magnitude. The standard k - ω model also overestimated near-wall separation. This study highlights the variability in accuracy among turbulence models, underlining the need for careful model selection based on specific prediction regions.
本研究根据实验数据对雷诺平均纳维-斯托克斯(RANS)方程的计算流体动力学(CFD)湍流闭合进行了评估,以模拟复杂的明渠水流,如发生在沙丘状鲑鱼产卵巢(称为 "红巢")上的水流。明渠水流的复杂性以近床湍流、不利压力和自由表面为特征,因此需要合适的湍流闭合模型来捕捉河床和水面之间的水流结构。我们评估了三种 RANS 模型:标准 k - ω、剪应力传输(SST)k - ω 和可实现 k - ε,以及可实现 k - ε 的四种壁面处理:标准壁面函数、可扩展壁面函数、增强壁面处理以及将标准壁面函数与解决粘性子层的近壁网格相结合的非常规闭合。尽管所有模型都基本捕捉到了整体流动特征,但在预测特定流动特征(如流动脱离)的能力方面存在明显差异。可实现的 k - ε 模型采用标准壁面函数和网格解析粘性子层,在预测近壁流动分离、速度场和自由表面高程方面优于其他闭合模型。采用对数层解析网格的可实现 k - ε 模型对自由表面高程的预测同样出色,但对近壁流动的预测不够精确。SST k - ω模型在预测湍流动能方面的表现优于采用任何传统壁面处理方法的可实现 k - ε闭合模型,并能更好地预测近边界速度分布,但高估了分离涡的大小。标准 k - ω 模型也高估了近壁分离。这项研究强调了不同湍流模型在精度上的差异,强调了根据特定预测区域仔细选择模型的必要性。
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.