Wendi Zhao, Defang Duan, Zhengtao Liu, Zihao Huo, Shumin Guo, Decheng An, Maosheng Miao, Tian Cui
{"title":"High temperature superconductor Na2B2H stabilized by hydrogen intercalation under ambient pressure","authors":"Wendi Zhao, Defang Duan, Zhengtao Liu, Zihao Huo, Shumin Guo, Decheng An, Maosheng Miao, Tian Cui","doi":"10.1007/s11433-024-2447-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogenated metal borides have attracted much attention due to their potential high-temperature superconductivity. Here, we propose a new strategy for hydrogen intercalation tuning the stability and superconductivity of the boron honeycomb sublattice, and predict an unprecedented layered compound Na<sub>2</sub>B<sub>2</sub>H, which hosts excellent superconductivity. Strikingly, the superconducting transition temperature (<i>T</i><sub>c</sub>) of Na<sub>2</sub>B<sub>2</sub>H reaches 42 K at ambient pressure. The <i>T</i><sub>c</sub> value can be further increase to 63 K under 5% biaxial tensile strain. The excellent superconductivity originates from the strong electron-phonon coupling between the <i>σ</i>-bonding bands near the Fermi level and the B-B stretching optical <i>E′</i> modes. The interstitial electron localization and crystal orbitals of the H-intercalated Na ion layer well match the boron honeycomb lattice and act as a chemical template to stabilize the B layer. Furthermore, the introduction of hydrogen tuned the Fermi level, and the coupling vibration of Na and H ions effectively enhanced the dynamic stability of the structure. Na<sub>2</sub>B<sub>2</sub>H represents a new family of layered high-temperature superconductors, and the strategy of stabilizing the honeycomb boron sublattice via chemical template hosts great potential for application to more layered compounds.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"67 11","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2447-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogenated metal borides have attracted much attention due to their potential high-temperature superconductivity. Here, we propose a new strategy for hydrogen intercalation tuning the stability and superconductivity of the boron honeycomb sublattice, and predict an unprecedented layered compound Na2B2H, which hosts excellent superconductivity. Strikingly, the superconducting transition temperature (Tc) of Na2B2H reaches 42 K at ambient pressure. The Tc value can be further increase to 63 K under 5% biaxial tensile strain. The excellent superconductivity originates from the strong electron-phonon coupling between the σ-bonding bands near the Fermi level and the B-B stretching optical E′ modes. The interstitial electron localization and crystal orbitals of the H-intercalated Na ion layer well match the boron honeycomb lattice and act as a chemical template to stabilize the B layer. Furthermore, the introduction of hydrogen tuned the Fermi level, and the coupling vibration of Na and H ions effectively enhanced the dynamic stability of the structure. Na2B2H represents a new family of layered high-temperature superconductors, and the strategy of stabilizing the honeycomb boron sublattice via chemical template hosts great potential for application to more layered compounds.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.