S. V. Dmitriev, A. A. Kistanov, I. V. Kosarev, S. A. Scherbinin, A. V. Shapeev
{"title":"Construction of Machine Learning Interatomic Potentials for Metals","authors":"S. V. Dmitriev, A. A. Kistanov, I. V. Kosarev, S. A. Scherbinin, A. V. Shapeev","doi":"10.1007/s11182-024-03261-7","DOIUrl":null,"url":null,"abstract":"<p>Molecular dynamics (MD) is a powerful tool for modeling the phase and structural transformations and the evolution of defects and their influence on the metallic material properties. The accuracy of MD modeling directly depends on the quality of interatomic potentials. Modern machine-learning potentials are typically trained on random atomic configurations. This approach has significantly improved the quality of new potentials over traditional EAM potentials. In this work, exact solutions to the equations of atomic motion are offered to train the machine learning potentials.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 9","pages":"1408 - 1413"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03261-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular dynamics (MD) is a powerful tool for modeling the phase and structural transformations and the evolution of defects and their influence on the metallic material properties. The accuracy of MD modeling directly depends on the quality of interatomic potentials. Modern machine-learning potentials are typically trained on random atomic configurations. This approach has significantly improved the quality of new potentials over traditional EAM potentials. In this work, exact solutions to the equations of atomic motion are offered to train the machine learning potentials.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.