Diego A. Rueda-Gómez, Elian E. Rueda-Fernández, Élder J. Villamizar-Roa
{"title":"Numerical Analysis for a Non-isothermal Incompressible Navier–Stokes–Allen–Cahn System","authors":"Diego A. Rueda-Gómez, Elian E. Rueda-Fernández, Élder J. Villamizar-Roa","doi":"10.1007/s00021-024-00898-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we develop the numerical analysis for a non-isothermal diffuse-interface model, in dimension <span>\\(N=2, 3,\\)</span> that describes the movement of a mixture of two incompressible viscous fluids. This model consists of modified Navier–Stokes equations coupled with a phase-field equation given by a convective Allen–Cahn equation, and energy transport equation for the temperature; which admits a dissipative energy inequality. We propose an energy stable numerical scheme based on the Finite Element Method, and we analyze optimal weak and strong error estimates, as well as convergence towards regular solutions. In order to construct the numerical scheme, we introduce two extra variables (given by the gradient of the temperature and the variation of the energy with respect to the phase-field function) which allows us to control the strong regularity required by the model, which is one of the main difficulties appearing from the numerical point of view. Having the equivalent model, we consider a fully discrete Finite Element approximation which is well-posed, energy stable and satisfies a set of uniform estimates which allow to analyze the convergence of the scheme. Finally, we present some numerical simulations to validate numerically our theoretical results.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00898-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00898-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we develop the numerical analysis for a non-isothermal diffuse-interface model, in dimension \(N=2, 3,\) that describes the movement of a mixture of two incompressible viscous fluids. This model consists of modified Navier–Stokes equations coupled with a phase-field equation given by a convective Allen–Cahn equation, and energy transport equation for the temperature; which admits a dissipative energy inequality. We propose an energy stable numerical scheme based on the Finite Element Method, and we analyze optimal weak and strong error estimates, as well as convergence towards regular solutions. In order to construct the numerical scheme, we introduce two extra variables (given by the gradient of the temperature and the variation of the energy with respect to the phase-field function) which allows us to control the strong regularity required by the model, which is one of the main difficulties appearing from the numerical point of view. Having the equivalent model, we consider a fully discrete Finite Element approximation which is well-posed, energy stable and satisfies a set of uniform estimates which allow to analyze the convergence of the scheme. Finally, we present some numerical simulations to validate numerically our theoretical results.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.