We study the nonhomogeneous boundary value problem for the steady-state Navier–Stokes equations under the slip boundary conditions in two-dimensional multiply-connected bounded domains. Employing the approach of Korobkov-Pileckas-Russo (Ann. Math. 181(2), 769-807, 2015), we prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary data. We also show that such an assumption on the friction coefficient is redundant for the existence of a solution in the case when the fluxes across each connected component of the boundary are sufficiently small, or the domain and the given data satisfy certain symmetry conditions. The crucial ingredient of our proof is the fact that the total head pressure corresponding to the solution to the steady Euler equations takes a constant value on each connected component of the boundary.